A comparative study of the venting gas of lithium-ion batteries during thermal runaway triggered by various methods

被引:41
|
作者
Xu, Chengshan [1 ]
Fan, Zhuwei
Zhang, Mengqi [2 ]
Wang, Peiben [2 ]
Wang, Huaibin [2 ,3 ]
Jin, Changyong [1 ]
Peng, Yong [1 ]
Jiang, Fachao [2 ]
Feng, Xuning [1 ]
Ouyang, Minggao [1 ]
机构
[1] Tsinghua Univ, Sch Vehicle & Mobil, Beijing 100084, Peoples R China
[2] China Agr Univ, Coll Engn, Beijing 100083, Peoples R China
[3] China Peoples Police Univ, Langfang 065000, Peoples R China
来源
CELL REPORTS PHYSICAL SCIENCE | 2023年 / 4卷 / 12期
基金
中国国家自然科学基金;
关键词
PROPAGATION; OVERCHARGE; GENERATION; MECHANISM; BEHAVIOR; FAILURE; CELLS; MODEL; FIRE;
D O I
10.1016/j.xcrp.2023.101705
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Different thermal runaway triggering methods in battery safety ac-cidents can lead to different outcomes. In this study, four testing methods, including side heating, nail penetration, overcharging, and oven heating, are used to trigger two types of batteries (pris-matic cells and pouch cells) within a closed bomb. Several safety properties are investigated, including temperature, amount of vent-ing gas and pressure, gas composition, and the mass of the thermal runaway product. Gas chromatography analysis reveals that the main components in the venting gas are CO, CO2, H2, C2H4, and CH4. Among the four tests conducted for both battery types, over-charging is identified as posing the greatest threat to battery safety. The findings from this study can contribute to assessing the risk associated with different triggers for thermal runaway.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Thermal runaway characteristics on NCM lithium-ion batteries triggered by local heating under different heat dissipation conditions
    Zhao Lei
    Zhu Maotao
    Xu Xiaoming
    Gao Junkui
    APPLIED THERMAL ENGINEERING, 2019, 159
  • [22] Review of Flame Behavior and Its Suppression during Thermal Runaway in Lithium-Ion Batteries
    Mao, Yikai
    Chen, Yin
    Chen, Mingyi
    BATTERIES-BASEL, 2024, 10 (09):
  • [23] Characteristics of particle emissions from lithium-ion batteries during thermal runaway: A review
    Li, Weifeng
    Xue, Yao
    Feng, Xinbo
    Rao, Shun
    Zhang, Tianyao
    Gao, Zhenhai
    Guo, Yueming
    Zhou, Haoyu
    Zhao, Haoyuan
    Song, Zelai
    Shi, Jiawei
    Wang, Hewu
    Wang, Deping
    JOURNAL OF ENERGY STORAGE, 2024, 78
  • [24] A model for the prediction of thermal runaway in lithium-ion batteries
    Azuaje-Berbeci, Bernardo J.
    Ertan, H. Bulent
    JOURNAL OF ENERGY STORAGE, 2024, 90
  • [25] Monitoring thermal runaway of lithium-ion batteries by means of gas sensors
    Wang, Xiao-Xue
    Li, Qiu-Tong
    Zhou, Xiao-Yan
    Hu, Yi-Ming
    Guo, Xin
    SENSORS AND ACTUATORS B-CHEMICAL, 2024, 411
  • [26] Thermal Runaway Gas Generation of Lithium Iron Phosphate Batteries Triggered by Various Abusive Conditions
    Su, Lei
    Yang, Fan
    Hu, Wei
    Chen, Shuwen
    Lyu, Nawei
    JOURNAL OF ENERGY ENGINEERING, 2024, 150 (04)
  • [27] Investigation into the effects of emergency spray on thermal runaway propagation within lithium-ion batteries
    Huang, Yuqi
    Lu, Jiajun
    Lu, Yiji
    Liu, Binghe
    JOURNAL OF ENERGY STORAGE, 2023, 66
  • [28] Aging effect delays overcharge-induced thermal runaway of lithium-ion batteries
    Yuan, Wei
    Liang, Dong
    Chu, Yanyan
    Wang, Qingsong
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2022, 79
  • [29] Systematic analysis of elemental flow patterns during thermal runaway in traction lithium-ion batteries
    Wang, Huaibin
    Wang, Qinzheng
    Gong, Xu
    Xu, Chengshan
    Jin, Changyong
    Peng, Yong
    Li, Yang
    Yang, Yongbin
    Feng, Jing
    Shen, Kai
    Feng, Xuning
    JOURNAL OF ENERGY CHEMISTRY, 2025, 104 : 20 - 27
  • [30] Thermal Runaway Early Warning and Risk Estimation Based on Gas Production Characteristics of Different Types of Lithium-Ion Batteries
    Cui, Yi
    Shi, Dong
    Wang, Zheng
    Mou, Lisha
    Ou, Mei
    Fan, Tianchi
    Bi, Shansong
    Zhang, Xiaohua
    Yu, Zhanglong
    Fang, Yanyan
    BATTERIES-BASEL, 2023, 9 (09):