A comparative study of the venting gas of lithium-ion batteries during thermal runaway triggered by various methods

被引:41
|
作者
Xu, Chengshan [1 ]
Fan, Zhuwei
Zhang, Mengqi [2 ]
Wang, Peiben [2 ]
Wang, Huaibin [2 ,3 ]
Jin, Changyong [1 ]
Peng, Yong [1 ]
Jiang, Fachao [2 ]
Feng, Xuning [1 ]
Ouyang, Minggao [1 ]
机构
[1] Tsinghua Univ, Sch Vehicle & Mobil, Beijing 100084, Peoples R China
[2] China Agr Univ, Coll Engn, Beijing 100083, Peoples R China
[3] China Peoples Police Univ, Langfang 065000, Peoples R China
来源
CELL REPORTS PHYSICAL SCIENCE | 2023年 / 4卷 / 12期
基金
中国国家自然科学基金;
关键词
PROPAGATION; OVERCHARGE; GENERATION; MECHANISM; BEHAVIOR; FAILURE; CELLS; MODEL; FIRE;
D O I
10.1016/j.xcrp.2023.101705
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Different thermal runaway triggering methods in battery safety ac-cidents can lead to different outcomes. In this study, four testing methods, including side heating, nail penetration, overcharging, and oven heating, are used to trigger two types of batteries (pris-matic cells and pouch cells) within a closed bomb. Several safety properties are investigated, including temperature, amount of vent-ing gas and pressure, gas composition, and the mass of the thermal runaway product. Gas chromatography analysis reveals that the main components in the venting gas are CO, CO2, H2, C2H4, and CH4. Among the four tests conducted for both battery types, over-charging is identified as posing the greatest threat to battery safety. The findings from this study can contribute to assessing the risk associated with different triggers for thermal runaway.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] A Fitting Method to Characterize the Gaseous Venting Behavior of Lithium-Ion Batteries in a Sealed Chamber during Thermal Runaway
    Li, Cheng
    Wang, Hewu
    Shi, Chao
    Wang, Yan
    Li, Yalun
    Ouyang, Minggao
    ENERGIES, 2023, 16 (23)
  • [2] Modeling thermal runaway of lithium-ion batteries with a venting process
    He, C. X.
    Yue, Q. L.
    Chen, Q.
    Zhao, T. S.
    APPLIED ENERGY, 2022, 327
  • [3] Experimental and modeling investigation on the gas generation dynamics of lithium-ion batteries during thermal runaway
    Mao, Binbin
    Fear, Conner
    Chen, Haodong
    Zhou, Hanwei
    Zhao, Chunpeng
    Mukherjee, Partha P.
    Sun, Jinhua
    Wang, Qingsong
    ETRANSPORTATION, 2023, 15
  • [4] Quantification of venting behavior of cylindrical lithium-ion and sodium-ion batteries during thermal runaway
    Fedoryshyna, Yaroslava
    Schaeffler, Stefan
    Soellner, Jonas
    Gillich, Elisabeth Irene
    Jossen, Andreas
    JOURNAL OF POWER SOURCES, 2024, 615
  • [5] Venting particle-induced arc of lithium-ion batteries during the thermal runaway
    Li, Cheng
    Wang, Hewu
    Li, Yalun
    Lu, Languang
    ETRANSPORTATION, 2024, 22
  • [6] Experimental study on thermal runaway and venting gas explosion hazards in prismatic lithium-ion batteries at different states of charge
    Xie, Wenlong
    Zhang, Liang
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2025, 198
  • [7] A comparative study on the thermal runaway inhibition of 18650 lithium-ion batteries by different fire extinguishing agents
    Zhao, Junchao
    Xue, Feng
    Fu, Yangyang
    Cheng, Yuan
    Yang, Hui
    Lu, Song
    ISCIENCE, 2021, 24 (08)
  • [8] Jet behavior of prismatic lithium-ion batteries during thermal runaway
    Zou, Kaiyu
    Chen, Xiao
    Ding, Zhiwei
    Gu, Jia
    Lu, Shouxiang
    APPLIED THERMAL ENGINEERING, 2020, 179
  • [9] Thermal Runaway of Lithium-Ion Batteries Triggered by Electromagnetic Interference
    Dubois, Eric Ravindranath
    Kherbouchi, Hocine
    Bosson, Joel
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2020, 62 (05) : 2096 - 2100
  • [10] Experimental and simulation study on internal thermal runaway development drives venting and flammable gas risk evaluate of Lithium-ion battery
    Wang, Peiben
    Xu, Chengshan
    Huang, Jingru
    Zhang, Mengqi
    Jiang, Fachao
    Feng, Xuning
    APPLIED ENERGY, 2025, 385