Low-Light Image Enhancement with Wavelet-based Diffusion Models

被引:49
|
作者
Jiang, Hai [1 ,2 ]
Luo, Ao [2 ]
Fan, Haoqiang [2 ]
Han, Songchen [1 ]
Liu, Shuaicheng [2 ,3 ]
机构
[1] Sichuan Univ, Chengdu, Peoples R China
[2] Megvii Technol, Beijing, Peoples R China
[3] Univ Elect Sci & Technol China, Hefei, Peoples R China
来源
ACM TRANSACTIONS ON GRAPHICS | 2023年 / 42卷 / 06期
基金
中国国家自然科学基金;
关键词
Diffusion models; low-light image enhancement; wavelet transformation; QUALITY ASSESSMENT; HISTOGRAM EQUALIZATION; MULTISCALE RETINEX;
D O I
10.1145/3618373
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration. To address these issues, we propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL. Specifically, we present a wavelet-based conditional diffusion model (WCDM) that leverages the generative power of diffusion models to produce results with satisfactory perceptual fidelity. Additionally, it also takes advantage of the strengths of wavelet transformation to greatly accelerate inference and reduce computational resource usage without sacrificing information. To avoid chaotic content and diversity, we perform both forward diffusion and denoising in the training phase of WCDM, enabling the model to achieve stable denoising and reduce randomness during inference. Moreover, we further design a high-frequency restoration module (HFRM) that utilizes the vertical and horizontal details of the image to complement the diagonal information for better fine-grained restoration. Extensive experiments on publicly available real-world benchmarks demonstrate that our method outperforms the existing state-of-the-art methods both quantitatively and visually, and it achieves remarkable improvements in efficiency compared to previous diffusion-based methods. In addition, we empirically show that the application for low-light face detection also reveals the latent practical values of our method. Code is available at https://github.com/JianghaiSCU/Diffusion-Low-Light.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Low-Light Image Enhancement Network Based on Recursive Network
    Liu, Fangjin
    Hua, Zhen
    Li, Jinjiang
    Fan, Linwei
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [42] Variational low-light image enhancement based on a haze model
    Shin J.
    Park H.
    Park J.
    Ha J.
    Paik J.
    IEIE Transactions on Smart Processing and Computing, 2018, 7 (04): : 325 - 331
  • [43] An Improved Algorithm for Low-Light Image Enhancement Based on RetinexNet
    Tang, Hao
    Zhu, Hongyu
    Tao, Huanjie
    Xie, Chao
    APPLIED SCIENCES-BASEL, 2022, 12 (14):
  • [44] ATTENTION-BASED NETWORK FOR LOW-LIGHT IMAGE ENHANCEMENT
    Zhang, Cheng
    Yan, Qingsen
    Zhu, Yu
    Li, Xianjun
    Sun, Jinqiu
    Zhang, Yanning
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [45] A Joint Network for Low-Light Image Enhancement Based on Retinex
    Jiang, Yonglong
    Zhu, Jiahe
    Li, Liangliang
    Ma, Hongbing
    COGNITIVE COMPUTATION, 2024, 16 (06) : 3241 - 3259
  • [46] Low-light image enhancement of space satellites based on GAN
    Chen Yulang
    Gao Jingmin
    Zhang Kebei
    Zhang Yang
    CHINESE SPACE SCIENCE AND TECHNOLOGY, 2021, 41 (03) : 16 - 23
  • [47] Low-light image enhancement based on Retinex theory and dual-tree complex wavelet transform
    Yang Mao-xiang
    Tang Gui-jin
    Liu Xiao-hua
    Wang Li-qian
    Cui Zi-guan
    Luo Su-huai
    OPTOELECTRONICS LETTERS, 2018, 14 (06) : 470 - 475
  • [48] Patch-Based Transformer for Low-Light Image Enhancement
    Zhang, Yu
    Jiang, Shan
    Tang, Xiangyun
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 268 - 273
  • [49] A Comparative Study on CNN based Low-light Image Enhancement
    Lal, Kanishk Jayant
    Rana, Deepanshu
    Parihar, Anil Singh
    2021 11TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2021), 2021, : 459 - 464
  • [50] Low-Light Image Enhancement Based on Nonsubsampled Shearlet Transform
    Wang, Manli
    Tian, Zijian
    Gui, Weifeng
    Zhang, Xiangyang
    Wang, Wenqing
    IEEE ACCESS, 2020, 8 : 63162 - 63174