Low-Light Image Enhancement with Wavelet-based Diffusion Models

被引:52
作者
Jiang, Hai [1 ,2 ]
Luo, Ao [2 ]
Fan, Haoqiang [2 ]
Han, Songchen [1 ]
Liu, Shuaicheng [2 ,3 ]
机构
[1] Sichuan Univ, Chengdu, Peoples R China
[2] Megvii Technol, Beijing, Peoples R China
[3] Univ Elect Sci & Technol China, Hefei, Peoples R China
来源
ACM TRANSACTIONS ON GRAPHICS | 2023年 / 42卷 / 06期
基金
中国国家自然科学基金;
关键词
Diffusion models; low-light image enhancement; wavelet transformation; QUALITY ASSESSMENT; HISTOGRAM EQUALIZATION; MULTISCALE RETINEX;
D O I
10.1145/3618373
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration. To address these issues, we propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL. Specifically, we present a wavelet-based conditional diffusion model (WCDM) that leverages the generative power of diffusion models to produce results with satisfactory perceptual fidelity. Additionally, it also takes advantage of the strengths of wavelet transformation to greatly accelerate inference and reduce computational resource usage without sacrificing information. To avoid chaotic content and diversity, we perform both forward diffusion and denoising in the training phase of WCDM, enabling the model to achieve stable denoising and reduce randomness during inference. Moreover, we further design a high-frequency restoration module (HFRM) that utilizes the vertical and horizontal details of the image to complement the diagonal information for better fine-grained restoration. Extensive experiments on publicly available real-world benchmarks demonstrate that our method outperforms the existing state-of-the-art methods both quantitatively and visually, and it achieves remarkable improvements in efficiency compared to previous diffusion-based methods. In addition, we empirically show that the application for low-light face detection also reveals the latent practical values of our method. Code is available at https://github.com/JianghaiSCU/Diffusion-Low-Light.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Wavelet-based enhancement network for low-light image
    Hu, Xiaopeng
    Liu, Kang
    Yin, Xiangchen
    Gao, Xin
    Jiang, Pingsheng
    Qian, Xu
    DISPLAYS, 2025, 87
  • [2] WMANet: Wavelet-Based Multi-Scale Attention Network for Low-Light Image Enhancement
    Xiang, Yangjun
    Hu, Gengsheng
    Chen, Mei
    Emam, Mahmoud
    IEEE ACCESS, 2024, 12 : 105674 - 105685
  • [3] Rw-Dm: Retinex and wavelet-based diffusion model for low-light image enhancement in underground coal mines
    Yadong Li
    Jun Tian
    Yang Chen
    Hongdong Wang
    Hui Yan
    Yang Peng
    Tianjiao Wang
    Complex & Intelligent Systems, 2025, 11 (8)
  • [4] Illumination Guided Attentive Wavelet Network for Low-Light Image Enhancement
    Xu, Jingzhao
    Yuan, Mengke
    Yan, Dong-Ming
    Wu, Tieru
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 6258 - 6271
  • [5] LightenDiffusion: Unsupervised Low-Light Image Enhancement with Latent-Retinex Diffusion Models
    Jiang, Hai
    Luo, Ao
    Liu, Xiaohong
    Han, Songchen
    Liu, Shuaicheng
    COMPUTER VISION - ECCV 2024, PT XLVIII, 2025, 15106 : 161 - 179
  • [6] Low-Light Image Enhancement Based on Maximal Diffusion Values
    Kim, Wonjun
    Lee, Ryong
    Park, Minwoo
    Lee, Sang-Hwan
    IEEE ACCESS, 2019, 7 : 129150 - 129163
  • [7] Low-Light Image Enhancement Network Based on Recursive Network
    Liu, Fangjin
    Hua, Zhen
    Li, Jinjiang
    Fan, Linwei
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [8] MCLL-Diff: Multiconditional Low-Light Image Enhancement Based on Diffusion Probabilistic Models
    Chen, Fengxin
    Yu, Ye
    Yi, Jun
    Zhang, Ting
    Zhao, Ji
    Jia, Wei
    Yu, Jun
    IEEE SENSORS JOURNAL, 2025, 25 (06) : 9912 - 9924
  • [9] Low-light image enhancement based on variational image decomposition
    Su, Yonggang
    Yang, Xuejie
    MULTIMEDIA SYSTEMS, 2024, 30 (06)
  • [10] Lightening Network for Low-Light Image Enhancement
    Wang, Li-Wen
    Liu, Zhi-Song
    Siu, Wan-Chi
    Lun, Daniel P. K.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7984 - 7996