Wavelet estimation for the nonparametric additive model in random design and long-memory dependent errors

被引:1
作者
Benhaddou, Rida [1 ,4 ]
Liu, Qing [2 ,3 ]
机构
[1] Ohio Univ, Dept Math, Athens, OH USA
[2] Wake Forest Univ, Dept Math & Stat, Winston Salem, NC USA
[3] Univ North Georgia, Dept Math, Oakwood, GA USA
[4] Ohio Univ, Dept Math, Athens, OH 45701 USA
关键词
Nonparametric additive models; wavelet series; random design; long-memory; minimax convergence rate; EFFICIENT ESTIMATION; ADAPTIVE ESTIMATION; REGRESSION; SHRINKAGE; VARIANCE;
D O I
10.1080/10485252.2023.2296523
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the nonparametric additive regression estimation in random design and long-memory errors and construct adaptive thresholding estimators based on wavelet series. The proposed approach achieves asymptotically near-optimal convergence rates when the unknown function and its univariate additive components belong to Besov space. We consider the problem under two noise structures; (1) homoskedastic Gaussian long memory errors and (2) heteroskedastic Gaussian long memory errors. In the homoskedastic long-memory error case, the estimator is completely adaptive with respect to the long-memory parameter. In the heteroskedastic long-memory case, the estimator may not be adaptive with respect to the long-memory parameter unless the heteroskedasticity is of polynomial form. In either case, the convergence rates depend on the long-memory parameter only when long-memory is strong enough, otherwise, the rates are identical to those under i.i.d. errors. In addition, convergence rates are free from the curse of dimensionality.
引用
收藏
页码:1088 / 1113
页数:26
相关论文
共 50 条
[41]   On robust tail index estimation for linear long-memory processes [J].
Beran, Jan ;
Das, Bikramjit ;
Schell, Dieter .
JOURNAL OF TIME SERIES ANALYSIS, 2012, 33 (03) :406-423
[42]   Estimation of structural mean breaks for long-memory data sets [J].
Hwang, Eunju ;
Shin, Dong Wan .
STATISTICS, 2017, 51 (04) :904-920
[43]   Estimation of the long-memory stochastic volatility model parameters that is robust to level shifts and deterministic trends [J].
McCloskey, Adam .
JOURNAL OF TIME SERIES ANALYSIS, 2013, 34 (03) :285-301
[44]   Change-point estimation in long memory nonparametric models with applications [J].
Wang, Lihong .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2008, 37 (01) :48-61
[45]   WAVELET ESTIMATION OF SEMIPARAMETRIC ERRORS IN VARIABLES MODEL [J].
Yalaz, Secil .
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01) :595-601
[46]   Wavelet-based robust estimation and variable selection in nonparametric additive models [J].
Amato, Umberto ;
Antoniadis, Anestis ;
De Feis, Italia ;
Gijbels, Irene .
STATISTICS AND COMPUTING, 2022, 32 (01)
[47]   Nonparametric conditional variance and error density estimation in regression models with dependent errors and predictors [J].
Kulik, Rafal ;
Wichelhaus, Cornelia .
ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 :856-898
[48]   Log-periodogram estimation of the memory parameter of a long-memory process under trend [J].
Sibbertsen, P .
STATISTICS & PROBABILITY LETTERS, 2003, 61 (03) :261-268
[49]   On maximum likelihood estimation of the long-memory parameter in fractional Gaussian noise [J].
Robbertse, Wickes ;
Lombard, Fred .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (04) :902-915
[50]   Bayesian Wavelet Estimation Of Long Memory Parameter [J].
Qu, Leming .
JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2005, 4 (01) :140-154