Wavelet estimation for the nonparametric additive model in random design and long-memory dependent errors

被引:1
作者
Benhaddou, Rida [1 ,4 ]
Liu, Qing [2 ,3 ]
机构
[1] Ohio Univ, Dept Math, Athens, OH USA
[2] Wake Forest Univ, Dept Math & Stat, Winston Salem, NC USA
[3] Univ North Georgia, Dept Math, Oakwood, GA USA
[4] Ohio Univ, Dept Math, Athens, OH 45701 USA
关键词
Nonparametric additive models; wavelet series; random design; long-memory; minimax convergence rate; EFFICIENT ESTIMATION; ADAPTIVE ESTIMATION; REGRESSION; SHRINKAGE; VARIANCE;
D O I
10.1080/10485252.2023.2296523
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the nonparametric additive regression estimation in random design and long-memory errors and construct adaptive thresholding estimators based on wavelet series. The proposed approach achieves asymptotically near-optimal convergence rates when the unknown function and its univariate additive components belong to Besov space. We consider the problem under two noise structures; (1) homoskedastic Gaussian long memory errors and (2) heteroskedastic Gaussian long memory errors. In the homoskedastic long-memory error case, the estimator is completely adaptive with respect to the long-memory parameter. In the heteroskedastic long-memory case, the estimator may not be adaptive with respect to the long-memory parameter unless the heteroskedasticity is of polynomial form. In either case, the convergence rates depend on the long-memory parameter only when long-memory is strong enough, otherwise, the rates are identical to those under i.i.d. errors. In addition, convergence rates are free from the curse of dimensionality.
引用
收藏
页码:1088 / 1113
页数:26
相关论文
共 50 条
[31]   A nonlinear model for long-memory conditional heteroscedasticity* [J].
Paul Doukhan ;
Ieva Grublyt˙ ;
Donatas Surgailis .
Lithuanian Mathematical Journal, 2016, 56 :164-188
[32]   The approximation of long-memory processes by an ARMA model [J].
Basak, GK ;
Chan, NH ;
Palma, W .
JOURNAL OF FORECASTING, 2001, 20 (06) :367-389
[33]   A nonlinear model for long-memory conditional heteroscedasticity [J].
Doukhan, Paul ;
Grublyte, Ieva ;
Surgailis, Donatas .
LITHUANIAN MATHEMATICAL JOURNAL, 2016, 56 (02) :164-188
[34]   Nonparametric regression on random fields with random design using wavelet method [J].
Li L. .
Statistical Inference for Stochastic Processes, 2016, 19 (1) :51-69
[35]   A wavelet analysis of scaling laws and long-memory in stock market volatility [J].
Vuorenmaa, TA .
Noise and Fluctuations in Econophysics and Finance, 2005, 5848 :39-54
[36]   Long-memory of Shanghai stock market: A wavelet-based approach [J].
Zhang, W ;
Zhang, XT ;
Xiong, X ;
Li, CY .
PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9, 2005, :3496-3500
[37]   Estimation of nonparametric additive models with high order spatial autoregressive errors [J].
Xu, Guoying ;
Bai, Yang .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (02) :311-343
[38]   Estimation of long memory parameter in nonparametric regression [J].
Cho, Yeoyoung ;
Baek, Changryong .
COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2019, 26 (06) :611-622
[39]   Nonparametric estimation under long memory dependence [J].
Estévez, G ;
Vieu, P .
JOURNAL OF NONPARAMETRIC STATISTICS, 2003, 15 (4-5) :535-551
[40]   Long-memory parameter estimation based on fractional spline wavelets [J].
Pinto, Mateus Gonzalez de Freitas ;
Chiann, Chang .
DIGITAL SIGNAL PROCESSING, 2023, 133