Wavelet estimation for the nonparametric additive model in random design and long-memory dependent errors

被引:1
作者
Benhaddou, Rida [1 ,4 ]
Liu, Qing [2 ,3 ]
机构
[1] Ohio Univ, Dept Math, Athens, OH USA
[2] Wake Forest Univ, Dept Math & Stat, Winston Salem, NC USA
[3] Univ North Georgia, Dept Math, Oakwood, GA USA
[4] Ohio Univ, Dept Math, Athens, OH 45701 USA
关键词
Nonparametric additive models; wavelet series; random design; long-memory; minimax convergence rate; EFFICIENT ESTIMATION; ADAPTIVE ESTIMATION; REGRESSION; SHRINKAGE; VARIANCE;
D O I
10.1080/10485252.2023.2296523
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the nonparametric additive regression estimation in random design and long-memory errors and construct adaptive thresholding estimators based on wavelet series. The proposed approach achieves asymptotically near-optimal convergence rates when the unknown function and its univariate additive components belong to Besov space. We consider the problem under two noise structures; (1) homoskedastic Gaussian long memory errors and (2) heteroskedastic Gaussian long memory errors. In the homoskedastic long-memory error case, the estimator is completely adaptive with respect to the long-memory parameter. In the heteroskedastic long-memory case, the estimator may not be adaptive with respect to the long-memory parameter unless the heteroskedasticity is of polynomial form. In either case, the convergence rates depend on the long-memory parameter only when long-memory is strong enough, otherwise, the rates are identical to those under i.i.d. errors. In addition, convergence rates are free from the curse of dimensionality.
引用
收藏
页码:1088 / 1113
页数:26
相关论文
共 50 条
[21]   An approximate wavelet MLE of short- and long-memory parameters [J].
Jensen, MJ .
STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 1999, 3 (04) :239-253
[22]   Nonparametric estimation in a regression model with additive and multiplicative noise [J].
Chesneau, Christophe ;
El Kolei, Salima ;
Kou, Junke ;
Navarro, Fabien .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 380
[23]   A wavelet Whittle estimator of generalized long-memory stochastic volatility [J].
Alex Gonzaga ;
Michael Hauser .
Statistical Methods & Applications, 2011, 20 :23-48
[24]   OPTIMAL ESTIMATION OF VARIANCE IN NONPARAMETRIC REGRESSION WITH RANDOM DESIGN [J].
Shen, Yandi ;
Gao, Chao ;
Witten, Daniela ;
Han, Fang .
ANNALS OF STATISTICS, 2020, 48 (06) :3589-3618
[25]   Estimation and forecasting of long-memory processes with missing values [J].
Palma, W ;
Chan, NH .
JOURNAL OF FORECASTING, 1997, 16 (06) :395-410
[26]   On least squares estimation for long-memory lattice processes [J].
Beran, Jan ;
Ghosh, Sucharita ;
Schell, Dieter .
JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (10) :2178-2194
[27]   On parameter estimation for locally stationary long-memory processes [J].
Beran, Jan .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (03) :900-915
[28]   Sparse Autoregressive based Estimation for Long-memory Models [J].
Sun, Yan .
PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON INFORMATION AND MANAGEMENT SCIENCES, 2011, 10 :300-307
[29]   Estimation and pricing under long-memory stochastic volatility [J].
Chronopoulou A. ;
Viens F.G. .
Annals of Finance, 2012, 8 (2-3) :379-403
[30]   On nonparametric kernel estimation of the mode of the regression function in the random design model [J].
Ziegler, K .
JOURNAL OF NONPARAMETRIC STATISTICS, 2002, 14 (06) :749-774