Wavelet estimation for the nonparametric additive model in random design and long-memory dependent errors

被引:1
作者
Benhaddou, Rida [1 ,4 ]
Liu, Qing [2 ,3 ]
机构
[1] Ohio Univ, Dept Math, Athens, OH USA
[2] Wake Forest Univ, Dept Math & Stat, Winston Salem, NC USA
[3] Univ North Georgia, Dept Math, Oakwood, GA USA
[4] Ohio Univ, Dept Math, Athens, OH 45701 USA
关键词
Nonparametric additive models; wavelet series; random design; long-memory; minimax convergence rate; EFFICIENT ESTIMATION; ADAPTIVE ESTIMATION; REGRESSION; SHRINKAGE; VARIANCE;
D O I
10.1080/10485252.2023.2296523
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the nonparametric additive regression estimation in random design and long-memory errors and construct adaptive thresholding estimators based on wavelet series. The proposed approach achieves asymptotically near-optimal convergence rates when the unknown function and its univariate additive components belong to Besov space. We consider the problem under two noise structures; (1) homoskedastic Gaussian long memory errors and (2) heteroskedastic Gaussian long memory errors. In the homoskedastic long-memory error case, the estimator is completely adaptive with respect to the long-memory parameter. In the heteroskedastic long-memory case, the estimator may not be adaptive with respect to the long-memory parameter unless the heteroskedasticity is of polynomial form. In either case, the convergence rates depend on the long-memory parameter only when long-memory is strong enough, otherwise, the rates are identical to those under i.i.d. errors. In addition, convergence rates are free from the curse of dimensionality.
引用
收藏
页码:1088 / 1113
页数:26
相关论文
共 50 条
[11]   Some results on random design regression with long memory errors and predictors [J].
Kulik, Rafal ;
Lorek, Pawel .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (01) :508-523
[12]   Root-n-consistent estimation in partial linear models with long-memory errors [J].
Beran, J ;
Ghosh, S .
SCANDINAVIAN JOURNAL OF STATISTICS, 1998, 25 (02) :345-357
[13]   Wavelet estimation in nonparametric linear mixed-effects errors in variables model [J].
Yalaz, Secil ;
Kuran, Ozge .
SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2022, 40 (03) :620-629
[15]   Nonparametric estimation of additive models with errors-in-variables [J].
Dong, Hao ;
Otsu, Taisuke ;
Taylor, Luke .
ECONOMETRIC REVIEWS, 2022, 41 (10) :1164-1204
[16]   Local Whittle estimation of the long-memory parameter [J].
Baum, Christopher F. ;
Hurn, Stan ;
Lindsay, Kenneth .
STATA JOURNAL, 2020, 20 (03) :565-583
[17]   Estimation of the frequency in cyclical long-memory series [J].
Artiach, Miguel ;
Arteche, Josu .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (11) :1627-1639
[18]   A smooth transition long-memory model [J].
Aloy, Marcel ;
Dufrenot, Gilles ;
Tong, Charles Lai ;
Peguin-Feissolle, Anne .
STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2013, 17 (03) :281-296
[19]   A wavelet Whittle estimator of generalized long-memory stochastic volatility [J].
Gonzaga, Alex ;
Hauser, Michael .
STATISTICAL METHODS AND APPLICATIONS, 2011, 20 (01) :23-48
[20]   WAVELET-BASED BAYESIAN ESTIMATION OF PARTIALLY LINEAR REGRESSION MODELS WITH LONG MEMORY ERRORS [J].
Ko, Kyungduk ;
Qu, Leming ;
Vannucci, Marina .
STATISTICA SINICA, 2009, 19 (04) :1463-1478