ADVANCING SEA ICE CLASSIFICATION CAPABILITIES IN SAR IMAGERY VIA POLARIMETRIC ANALYSIS AND MACHINE LEARNING

被引:0
作者
Reinisch, Elena C. [1 ]
Castro, Lauren A. [1 ]
Whelsky, Amber [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
关键词
D O I
10.1109/IGARSS52108.2023.10281859
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Understanding rapid changes in sea ice is essential for Arctic navigation. While machine learning models derived from remote sensing imagery are ideal for this work, they are limited by a current lack of high-fidelity training label datasets. To address this, we are developing methods for deriving labels directly from high-fidelity synthetic aperture radar data using polarimetric and texture feature analysis. We use decisionbased supervised classifiers to identify optimal polarimetric and texture feature relationships for class separation and subsequently use these relationships to establish new classification planes optimized for sea ice identification in SAR data. We also establish methods to quantify uncertainty in the resulting labels. These theoretical, physics-based planes improve the standard of label resolution tenfold, are robust to confounding factors such as wind-roughened waters and inaccurate training labels, and have the potential to be satellite-agnostic, thereby advancing the current state of sea ice label derivation.
引用
收藏
页码:954 / 957
页数:4
相关论文
共 50 条
  • [41] Polarimetric C-band SAR observations of sea ice in the Greenland Sea
    Thomsen, BB
    Nghiem, SV
    Kwok, R
    IGARSS '98 - 1998 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS 1-5: SENSING AND MANAGING THE ENVIRONMENT, 1998, : 2502 - 2504
  • [42] IceGCN: An Interactive Sea Ice Classification Pipeline for SAR Imagery Based on Graph Convolutional Network
    Jiang, Mingzhe
    Chen, Xinwei
    Xu, Linlin
    Clausi, David A.
    REMOTE SENSING, 2024, 16 (13)
  • [43] SEMI-SUPERVISED SEA ICE CLASSIFICATION OF SAR IMAGERY BASED ON GRAPH CONVOLUTIONAL NETWORK
    Jiang, Mingzhe
    Chen, Xinwei
    Xu, Linlin
    Clausi, David A.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1031 - 1034
  • [44] A Residual Convolution Neural Network for Sea Ice Classification with Sentinel-1 SAR Imagery
    Song, Wei
    Li, Minghui
    He, Qi
    Huang, Dongmei
    Perra, Cristian
    Liotta, Antonio
    2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 795 - 802
  • [45] A Spatio-Temporal Deep Learning Model for Automatic Arctic Sea Ice Classification with Sentinel-1 SAR Imagery
    Zhao, Li
    Zhou, Yufeng
    Zhong, Wei
    Jin, Cheng
    Liu, Bo
    Li, Fangzhao
    REMOTE SENSING, 2025, 17 (02)
  • [46] Polarimetric SAR image classification employing subaperture polarimetric analysis
    Ainsworth, TL
    Lee, JS
    IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 48 - 50
  • [47] Applying maximum entropy methods to aid in classification of polarimetric SAR imagery
    Kouskoulas, Y
    Ulaby, FT
    Pierce, L
    Dobson, MC
    IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 2114 - 2116
  • [48] INTEGRATION OF OPTICAL AND POLARIMETRIC SAR IMAGERY FOR LOCALLY ACCURATE CROP CLASSIFICATION
    Qiao, Cheng
    Daneshfar, Bahram
    Davidson, Andrew
    Jarvis, Ian
    Liu, Tianyu
    Fisette, Thierry
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 1485 - 1488
  • [49] SUPERVISED CLASSIFICATION OF POLARIMETRIC SAR IMAGERY USING TEMPORAL AND CONTEXTUAL INFORMATION
    Dargahi, A.
    Maghsoudi, Y.
    Abkar, A. A.
    SMPR CONFERENCE 2013, 2013, 40-1-W3 : 107 - 110
  • [50] Polarimetric scattering indexes and information entropy of the SAR imagery for surface classification
    Jin, YQ
    Chen, F
    IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 2708 - 2710