ADVANCING SEA ICE CLASSIFICATION CAPABILITIES IN SAR IMAGERY VIA POLARIMETRIC ANALYSIS AND MACHINE LEARNING

被引:0
|
作者
Reinisch, Elena C. [1 ]
Castro, Lauren A. [1 ]
Whelsky, Amber [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
关键词
D O I
10.1109/IGARSS52108.2023.10281859
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Understanding rapid changes in sea ice is essential for Arctic navigation. While machine learning models derived from remote sensing imagery are ideal for this work, they are limited by a current lack of high-fidelity training label datasets. To address this, we are developing methods for deriving labels directly from high-fidelity synthetic aperture radar data using polarimetric and texture feature analysis. We use decisionbased supervised classifiers to identify optimal polarimetric and texture feature relationships for class separation and subsequently use these relationships to establish new classification planes optimized for sea ice identification in SAR data. We also establish methods to quantify uncertainty in the resulting labels. These theoretical, physics-based planes improve the standard of label resolution tenfold, are robust to confounding factors such as wind-roughened waters and inaccurate training labels, and have the potential to be satellite-agnostic, thereby advancing the current state of sea ice label derivation.
引用
收藏
页码:954 / 957
页数:4
相关论文
共 50 条
  • [21] Machine Learning-Based Detection of Icebergs in Sea Ice and Open Water Using SAR Imagery
    Jafari, Zahra
    Bobby, Pradeep
    Karami, Ebrahim
    Taylor, Rocky
    REMOTE SENSING, 2025, 17 (04)
  • [22] Machine Learning for Arctic Sea Ice Physical Properties Estimation Using Dual-Polarimetric SAR Data
    Blix, Katalin
    Espeseth, Martine Mostervik
    Eltoft, Torbjorn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (06): : 4618 - 4634
  • [23] SEA ICE AND OPEN WATER CLASSIFICATION OF SAR IMAGERY USING CNN-BASED TRANSFER LEARNING
    Xu, Yan
    Scott, K. Andrea
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 3262 - 3265
  • [24] Subaperture analysis of polarimetric SAR imagery
    Kelly, J.
    Ainsworth, T. L.
    Lee, J. -S.
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 5190 - 5193
  • [25] Contextual Classification of Sea-Ice Types Using Compact Polarimetric SAR Data
    Ghanbari, Mohsen
    Clausi, David A.
    Xu, Linlin
    Jiang, Mingzhe
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (10): : 7476 - 7491
  • [26] CROP CLASSIFICATION USING FULLY POLARIMETRIC SAR IMAGERY
    An, Gangqiang
    Xing, Minfeng
    Ni, Xiliang
    Zhou, Junjie
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 7456 - 7459
  • [27] Sea ice classification with dual-polarized SAR imagery: a hierarchical pipeline
    Chen, Xinwei
    Scott, K. Andrea
    Jiang, Mingzhe
    Fang, Yuan
    Xu, Linlin
    Clausi, David A.
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW), 2023, : 224 - 232
  • [28] Coastal Zone Classification With Fully Polarimetric SAR Imagery
    Gou, Shuiping
    Li, Xiaofeng
    Yang, Xiaofeng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (11) : 1616 - 1620
  • [29] ORIENTATION EFFECTS ON POLARIMETRIC SAR IMAGES OF SEA ICE
    Marino, Armando
    Hajnsek, Irena
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 3626 - 3629
  • [30] Classification of river ice using polarimetric SAR data
    Mermoz, S.
    Allain, S.
    Bernier, M.
    Pottier, E.
    Gherboudj, I.
    CANADIAN JOURNAL OF REMOTE SENSING, 2009, 35 (05) : 460 - 473