Advances in Quantum Machine Learning and Deep Learning for Image Classification: A Survey

被引:11
|
作者
Kharsa, Ruba [1 ]
Bouridane, Ahmed [2 ]
Amira, Abbes [1 ]
机构
[1] Univ Sharjah, Dept Comp Sci, Sharjah, U Arab Emirates
[2] Univ Sharjah, Dept Comp Engn, Sharjah, U Arab Emirates
关键词
Quantum Image Classification; Quantum Support Vector Machine; Quantum K Nearest Neighbor; Quantum Convolutional Neural Network; Variational Quantum Circuit; Quantum Tensor Network; TENSOR NETWORKS; NEURAL-NETWORKS; RECOGNITION; ALGORITHM;
D O I
10.1016/j.neucom.2023.126843
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image classification, which is a fundamental element of Computer Vision (CV) and Artificial Intelligence (AI), has been researched intensively in numerous domains and embedded in many products. However, with the exponential increase in the number of images and the complexity of the required tasks, deep-learning classifica-tion algorithms demand more intensive resources and computational power to train the models and update the massive number of parameters. Quantum computing is a new research technology with a promising capability of exponential speed up and operational parallelization with its unique phenomena including superposition and entanglement. Researchers have already started utilizing Quantum Deep Learning (QDL) and Quantum Machine Learning (QML) in image classification. Yet, to our knowledge, there exists no comprehensive published literature review on quantum image classification. Therefore, this paper analyzes the advances in this field by dividing the studies based on a unique taxonomy, discussing the limitations, summarizing essential aspects of each research, and finally, emphasizing the gaps, challenges, and recommendations. One of the key challenges presented in the paper is that quantum computers are in the Noisy Intermediate-Scale Quantum (NISQ) era, where they contain a limited number of noisy qubits, therefore challenging complex quantum classifiers and complex images from advanced datasets. This research recommends constructing a novel quantum image encoding method that adapts to the available number of qubits and enables RGB images as a critical contribution to the existing research.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] A survey of machine learning and deep learning in remote sensing of geological environment: Challenges, advances, and opportunities
    Han, Wei
    Zhang, Xiaohan
    Wang, Yi
    Wang, Lizhe
    Huang, Xiaohui
    Li, Jun
    Wang, Sheng
    Chen, Weitao
    Li, Xianju
    Feng, Ruyi
    Fan, Runyu
    Zhang, Xinyu
    Wang, Yuewei
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 202 : 87 - 113
  • [22] Recent advances in quantum machine learning
    Zhang, Yao
    Ni, Qiang
    Quantum Engineering, 2020, 2 (01)
  • [23] Classification of deep image features of lentil varieties with machine learning techniques
    Butuner, Resul
    Cinar, Ilkay
    Taspinar, Yavuz Selim
    Kursun, Ramazan
    Calp, M. Hanefi
    Koklu, Murat
    EUROPEAN FOOD RESEARCH AND TECHNOLOGY, 2023, 249 (05) : 1303 - 1316
  • [24] Melanoma Classification using Machine Learning and Deep Learning
    Tran Anh Vu
    Pham Quang Son
    Dinh Nghia Hiep
    Hoang Quang Huy
    Nguyen Phan Kien
    Pham Thi Viet Huong
    2023 1ST INTERNATIONAL CONFERENCE ON HEALTH SCIENCE AND TECHNOLOGY, ICHST 2023, 2023,
  • [25] A document image classification system fusing deep and machine learning models
    Omurca, Sevinc Ilhan
    Ekinci, Ekin
    Sevim, Semih
    Edinc, Eren Berk
    Eken, Suleyman
    Sayar, Ahmet
    APPLIED INTELLIGENCE, 2023, 53 (12) : 15295 - 15310
  • [26] Deep and wide feature based extreme learning machine for image classification
    Qing, Yuanyuan
    Zeng, Yijie
    Li, Yue
    Huang, Guang-Bin
    NEUROCOMPUTING, 2020, 412 : 426 - 436
  • [27] Classification of deep image features of lentil varieties with machine learning techniques
    Resul Butuner
    Ilkay Cinar
    Yavuz Selim Taspinar
    Ramazan Kursun
    M. Hanefi Calp
    Murat Koklu
    European Food Research and Technology, 2023, 249 : 1303 - 1316
  • [28] A document image classification system fusing deep and machine learning models
    Sevinç İlhan Omurca
    Ekin Ekinci
    Semih Sevim
    Eren Berk Edinç
    Süleyman Eken
    Ahmet Sayar
    Applied Intelligence, 2023, 53 : 15295 - 15310
  • [29] Crop Seeds Classification Using Traditional Machine Learning and Deep Learning Techniques: A Comprehensive Survey
    Vipin Kumar
    Prem Shankar Singh Aydav
    Sonajharia Minz
    SN Computer Science, 5 (8)
  • [30] A systematic literature survey on skin disease detection and classification using machine learning and deep learning
    Yadav, Rashmi
    Bhat, Aruna
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (32) : 78093 - 78124