Dysfunction of autophagy in high-fat diet-induced nonalcoholic fatty liver disease

被引:48
作者
Ren, Qiannan [1 ]
Sun, Qiming [2 ,3 ,4 ]
Fu, Junfen [1 ]
机构
[1] Zhejiang Univ, Sch Med,Childrens Hosp, Dept Endocrinol, Natl Clin Res Ctr Child Hlth, Hangzhou, Peoples R China
[2] Zhejiang Univ, Sch Med, Affiliated Hosp 4, Int Inst Med, Yiwu, Zhejiang, Peoples R China
[3] Zhejiang Univ, Sch Med, Affiliated Hosp 2, Dept Biochem, Hangzhou, Peoples R China
[4] Zhejiang Univ, Sch Med, Affiliated Hosp 2, Dept Cardiol, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Autophagy; hepatocyte; high-fat diet; lipophagy; non-alcoholic fatty liver disease; non-parenchymal cells; ENDOPLASMIC-RETICULUM STRESS; HEPATIC STELLATE CELLS; NF-KAPPA-B; LIPID-METABOLISM; PROMOTING AUTOPHAGY; INHIBITS AUTOPHAGY; REGULATE AUTOPHAGY; INSULIN-RESISTANCE; NUTRIENT STRESS; COPII VESICLES;
D O I
10.1080/15548627.2023.2254191
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases with a global rising prevalence, which is closely associated with a high-fat diet (HFD) intake. Macroautophagy/autophagy is an evolutionarily conserved degradation process for cytosolic macromolecules and damaged organelles. The potential role of autophagy in hepatic lipid metabolism has been recognized, while dysfunction of hepatic autophagy has been found to contribute to NAFLD. Herein, we provide an overview of the autophagy phases with the regulatory machinery, and the current understanding of hepatic autophagy in its protective role in HFD-induced NAFLD. We also discuss the genetic and pharmacological interventions that may help elucidate the molecular mechanisms of autophagy and influence the future therapeutic direction in NAFLD.AbbreviationsACOX1: acyl-CoA oxidase 1; ADH5: alcohol dehydrogenase 5 (class III), chi polypeptide; ADIPOQ: adiponectin, C1Q and collagen domain containing; ATG: autophagy related; BECN1: beclin 1; CRTC2: CREB regulated transcription coactivator 2; ER: endoplasmic reticulum; F2RL1: F2R like trypsin receptor 1; FA: fatty acid; FOXO1: forkhead box O1; GLP1R: glucagon like peptide 1 receptor; GRK2: G protein-coupled receptor kinase 2; GTPase: guanosine triphosphatase; HFD: high-fat diet; HSCs: hepatic stellate cells; HTRA2: HtrA serine peptidase 2; IRGM: immunity related GTPase M; KD: knockdown; KDM6B: lysine demethylase 6B; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LAP: LC3-associated phagocytosis; LDs: lipid droplets; Li KO: liver-specific knockout; LSECs: liver sinusoidal endothelial cells; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K5: mitogen-activated protein kinase kinase kinase 5; MED1: mediator complex subunit 1; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin complex 1; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; NFE2L2: NFE2 like bZIP transcription factor 2; NOS3: nitric oxide synthase 3; NR1H3: nuclear receptor subfamily 1 group H member 3; OA: oleic acid; OE: overexpression; OSBPL8: oxysterol binding protein like 8; PA: palmitic acid; RUBCNL: rubicon like autophagy enhancer; PLIN2: perilipin 2; PLIN3: perilipin 3; PPARA: peroxisome proliferator activated receptor alpha; PRKAA2/AMPK: protein kinase AMP-activated catalytic subunit alpha 2; RAB: member RAS oncogene family; RPTOR: regulatory associated protein of MTOR complex 1; SCD: stearoyl-CoA desaturase; SIRT1: sirtuin 1; SIRT3: sirtuin 3; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SQSTM1/p62: sequestosome 1; SREBF1: sterol regulatory element binding transcription factor 1;SREBF2: sterol regulatory element binding transcription factor 2; STING1: stimulator of interferon response cGAMP interactor 1; STX17: syntaxin 17; TAGs: triacylglycerols; TFEB: transcription factor EB; TP53/p53: tumor protein p53; ULK1: unc-51 like autophagy activating kinase 1; VMP1: vacuole membrane protein 1.
引用
收藏
页码:221 / 241
页数:21
相关论文
共 276 条
[91]   Altered lipid content inhibits autophagic vesicular fusion [J].
Koga, Hiroshi ;
Kaushik, Susmita ;
Cuervo, Ana Maria .
FASEB JOURNAL, 2010, 24 (08) :3052-3065
[92]   SNAREs define targeting specificity of trafficking vesicles by combinatorial interaction with tethering factors [J].
Koike, Seiichi ;
Jahn, Reinhard .
NATURE COMMUNICATIONS, 2019, 10 (1)
[93]   Role of autophagy in the pathophysiology of nonalcoholic fatty liver disease: A controversial issue [J].
Kwanten, Wilhelmus J. ;
Martinet, Wim ;
Michielsen, Peter P. ;
Francque, Sven M. .
WORLD JOURNAL OF GASTROENTEROLOGY, 2014, 20 (23) :7325-7338
[94]   Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease [J].
Lebeaupin, Cynthia ;
Vallee, Deborah ;
Hazari, Younis ;
Hetz, Claudio ;
Chevet, Eric ;
Bailly-Maitre, Beatrice .
JOURNAL OF HEPATOLOGY, 2018, 69 (04) :927-947
[95]   SQSTM1/p62 activates NFE2L2/NRF2 via ULK1-mediated autophagic KEAP1 degradation and protects mouse liver from lipotoxicity [J].
Lee, Da Hyun ;
Park, Jeong Su ;
Lee, Yu Seol ;
Han, Jisu ;
Lee, Dong-Kyu ;
Kwon, Sung Won ;
Han, Dai Hoon ;
Lee, Yong-Ho ;
Bae, Soo Han .
AUTOPHAGY, 2020, 16 (11) :1949-1973
[96]   Eucommia ulmoides Leaf Extract Ameliorates Steatosis Induced by High-fat Diet in Rats by Increasing Lysosomal Function [J].
Lee, Geum-Hwa ;
Lee, Hwa-Young ;
Park, Sun-Ah ;
Shin, Tai-Sun ;
Chae, Han-Jung .
NUTRIENTS, 2019, 11 (02)
[97]   Molecular insights into the role of mitochondria in non-alcoholic fatty liver disease [J].
Lee, Jin ;
Park, Jeong-Su ;
Roh, Yoon Seok .
ARCHIVES OF PHARMACAL RESEARCH, 2019, 42 (11) :935-946
[98]   Autophagy is a gatekeeper of hepatic differentiation and carcinogenesis by controlling the degradation of Yap [J].
Lee, Youngmin A. ;
Noon, Luke A. ;
Akat, Kemal M. ;
Ybanez, Maria D. ;
Lee, Ting-Fang ;
Berres, Marie-Luise ;
Fujiwara, Naoto ;
Goossens, Nicolas ;
Chou, Hsin-I ;
Parvin-Nejad, Fatemeh P. ;
Khambu, Bilon ;
Kramer, Elisabeth G. M. ;
Gordon, Ronald ;
Pfleger, Cathie ;
Germain, Doris ;
John, Gareth R. ;
Campbell, Kirk N. ;
Yue, Zhenyu ;
Yin, Xiao-Ming ;
Cuervo, Ana Maria ;
Czaja, Mark J. ;
Fiel, M. Isabel ;
Hoshida, Yujin ;
Friedman, Scott L. .
NATURE COMMUNICATIONS, 2018, 9
[99]   An ER-Localized SNARE Protein Is Exported in Specific COPII Vesicles for Autophagosome Biogenesis [J].
Lemus, Leticia ;
Luis Ribas, Juan ;
Sikorska, Natalia ;
Goder, Veit .
CELL REPORTS, 2016, 14 (07) :1710-1722
[100]   Biological Functions of Autophagy Genes: A Disease Perspective [J].
Levine, Beth ;
Kroemer, Guido .
CELL, 2019, 176 (1-2) :11-42