Plasma-enhanced atomic layer deposition of crystalline GaN thin films on quartz substrates with sharp interfaces

被引:0
作者
Liu, Sanjie [1 ]
Li, Yangfeng [2 ]
Liu, Qing [3 ]
Tao, Jiayou [1 ]
Zheng, Xinhe [4 ]
机构
[1] Hunan Inst Sci & Technol, Sch Phys & Elect Sci, Key Lab Hunan Prov Informat Photon & Freespace Opt, Yueyang 414006, Hunan, Peoples R China
[2] Hunan Univ, Coll Semicond, Coll Integrated Circuits, Changsha 410082, Hunan, Peoples R China
[3] Hunan Raven Digital Technol Co Ltd, Changsha 410000, Peoples R China
[4] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing Key Lab Magneto Photoelect Composite & Int, Beijing 100083, Peoples R China
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A | 2023年 / 41卷 / 05期
关键词
LIGHT-EMITTING-DIODES; LOW-TEMPERATURE GROWTH; EPITAXIAL-GROWTH; ELECTRON-TRANSPORT; HALL-MOBILITY; ALN; PHOTOLUMINESCENCE; AIN; INN;
D O I
10.1116/6.0002639
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Polycrystalline hexagonal GaN films were deposited directly on amorphous quartz (fused glass) substrates at 250 degrees C by plasma-enhanced atomic layer deposition. An atomically sharp GaN/quartz interface is observed from transmission electron microscopy images, which is further demonstrated by x-ray reflectivity measurements. The atomic force microscopy image reveals a smooth surface of GaN. The concentrations of oxygen and carbon impurities in GaN are 6.3 and 0.64%, respectively, according to x-ray photoelectron spectroscopy analysis. The electron mobility measured by Hall is 1.33 cm2 V(-1 )s(-1). The results show that high-quality GaN films are obtained on amorphous quartz substrates, and GaN/quartz can be used as a template for the fabrication of GaN-based devices.
引用
收藏
页数:8
相关论文
共 50 条
[21]   Structural, optical, electrical and resistive switching properties of ZnO thin films deposited by thermal and plasma-enhanced atomic layer deposition [J].
Zhang, Jian ;
Yang, Hui ;
Zhang, Qi-long ;
Dong, Shurong ;
Luo, J. K. .
APPLIED SURFACE SCIENCE, 2013, 282 :390-395
[22]   Uniform GaN thin films grown on (100) silicon by remote plasma atomic layer deposition [J].
Shih, Huan-Yu ;
Lin, Ming-Chih ;
Chen, Liang-Yih ;
Chen, Miin-Jang .
NANOTECHNOLOGY, 2015, 26 (01)
[23]   Structural properties of AlN films deposited by plasma-enhanced atomic layer deposition at different growth temperatures [J].
Alevli, Mustafa ;
Ozgit, Cagla ;
Donmez, Inci ;
Biyikli, Necmi .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2012, 209 (02) :266-271
[24]   Growth characteristics and properties of Ga-doped ZnO (GZO) thin films grown by thermal and plasma-enhanced atomic layer deposition [J].
Nam, Taewook ;
Lee, Chang Wan ;
Kim, Hyun Jae ;
Kim, Hyungjun .
APPLIED SURFACE SCIENCE, 2014, 295 :260-265
[25]   Low-Temperature As-Grown Crystalline β-Ga2O3 Films via Plasma-Enhanced Atomic Layer Deposition [J].
Ilhom, Saidjafarzoda ;
Mohammad, Adnan ;
Shukla, Deepa ;
Grasso, John ;
Willis, Brian G. ;
Okyay, Ali Kemal ;
Biyikli, Necmi .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (07) :8538-8551
[26]   Growth of thin barrier films on flexible polymer substrates by atomic layer deposition [J].
Jarvis, Karyn L. ;
Evans, Peter J. .
THIN SOLID FILMS, 2017, 624 :111-135
[27]   Annealing effects on properties of Ga2O3 films deposited by plasma-enhanced atomic layer deposition [J].
Shi, Fengfeng ;
Han, Jun ;
Xing, Yanhui ;
Li, Junshuai ;
Zhang, Li ;
He, Tao ;
Li, Tao ;
Deng, Xuguang ;
Zhang, Xiaodong ;
Zhang, Baoshun .
MATERIALS LETTERS, 2019, 237 :105-108
[28]   Aluminum Nitride Transition Layer for Power Electronics Applications Grown by Plasma-Enhanced Atomic Layer Deposition [J].
Seppanen, Heli ;
Kim, Iurii ;
Etula, Jarkko ;
Ubyivovk, Evgeniy ;
Bouravleuv, Alexei ;
Lipsanen, Harri .
MATERIALS, 2019, 12 (03)
[29]   Substrate temperature influence on the properties of GaN thin films grown by hollow-cathode plasma-assisted atomic layer deposition [J].
Alevli, Mustafa ;
Gungor, Nese ;
Haider, Ali ;
Kizir, Seda ;
Leghari, Shahid A. ;
Biyikli, Necmi .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2016, 34 (01)
[30]   Plasma-enhanced pulsed laser deposition of copper oxide and zinc oxide thin films [J].
Rajendiran, S. ;
Meehan, D. ;
Wagenaars, E. .
AIP ADVANCES, 2020, 10 (06)