Geometric classifications of k-almost Ricci solitons admitting paracontact metrices

被引:15
|
作者
Li, Yanlin [1 ]
Patra, Dhriti Sundar [2 ]
Alluhaibi, Nadia [3 ]
Mofarreh, Fatemah [4 ]
Ali, Akram [5 ]
机构
[1] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
[2] Indian Inst Technol, Dept Math, Hyderabad 502285, India
[3] King Abdulaziz Univ, Sci & Arts Coll, Dept Math, Jeddah 21911, Saudi Arabia
[4] Princess Nourah Bint Abdulrahman Univ, Fac Sci, Math Sci Dept, Riyadh 11546, Saudi Arabia
[5] King Khalid Univ, Coll Sci, Dept Math, Abha 9004, Saudi Arabia
来源
OPEN MATHEMATICS | 2023年 / 21卷 / 01期
基金
中国国家自然科学基金;
关键词
k-almost Ricci solitons; Ricci soliton; Einstein manifold; paracontact metric manifold; infinitesimal paracontact transformation; RULED SURFACES;
D O I
10.1515/math-2022-0610
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The prime objective of the approach is to give geometric classifications of k-almost Ricci solitons associated with paracontact manifolds. Let M2n+1 (f, ?, ?, g ) be a paracontact metric manifold, and if a K-para-contact metric g represents a k-almost Ricci soliton (g, V, k, ?) and the potential vector field V is Jacobi field along the Reeb vector field ?, then either k = ? - 2n, or g is a k-Ricci soliton. Next, we consider K-paracontact manifold as a k-almost Ricci soliton with the potential vector field V is infinitesimal paracontact transformation or collinear with ?. We have proved that if a paracontact metric as a k-almost Ricci soliton associated with the non-zero potential vector field V is collinear with ? and the Ricci operator Q commutes with paracontact structure f, then it is Einstein of constant scalar curvature equals to -2 n(2 n + 1). Finally, we have deduced that a para-Sasakian manifold admitting a gradient k-almost Ricci soliton is Einstein of constant scalar curvature equals to -2 n(2 n + 1).
引用
收藏
页数:11
相关论文
共 38 条
  • [1] Ricci Almost Solitons And Gradient Ricci Almost Solitons In (k, μ)-Paracontact Geometry
    De, U. C.
    Mandal, krishanu
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2019, 37 (03): : 119 - 130
  • [2] THE k-ALMOST RICCI SOLITONS AND CONTACT GEOMETRY
    Ghosh, Amalendu
    Patra, Dhriti Sundar
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (01) : 161 - 174
  • [3] η-RICCI SOLITONS IN (ε)-ALMOST PARACONTACT METRIC MANIFOLDS
    Blaga, Adara Monica
    Perktas, Selcen Yuksel
    Acet, Bilal Eftal
    Erdogan, Feyza Esra
    GLASNIK MATEMATICKI, 2018, 53 (01) : 205 - 220
  • [4] Geometry of conformal η-Ricci solitons and conformal η-Ricci almost solitons on paracontact geometry
    Li, Yanlin
    Dey, Santu
    Pahan, Sampa
    Ali, Akram
    OPEN MATHEMATICS, 2022, 20 (01): : 574 - 589
  • [5] Geometry of almost Ricci solitons on paracontact metric manifolds
    Ali, Akram
    Mofarreh, Fatemah
    Patra, Dhriti Sundar
    QUAESTIONES MATHEMATICAE, 2022, 45 (08) : 1167 - 1180
  • [6] Ricci Solitons and Gradient Ricci Solitons on N(k)-Paracontact Manifolds
    Chand, De Uday
    Mandal, Krishanu
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2019, 15 (03) : 307 - 320
  • [7] Hypersurfaces of metallic Riemannian manifolds as k-almost Newton-Ricci solitons
    Choudhary, Majid Ali
    Siddiqi, Mohd. Danish
    Bahadir, Oguzhan
    Uddin, Siraj
    FILOMAT, 2023, 37 (07) : 2187 - 2197
  • [8] The k-almost Yamabe solitons and almost coKahler manifolds
    Chen, Xiaomin
    De, Uday Chand
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (11)
  • [9] Characteristics of Sasakian Manifolds Admitting Almost *-Ricci Solitons
    Rovenski, Vladimir
    Patra, Dhriti Sundar
    FRACTAL AND FRACTIONAL, 2023, 7 (02)
  • [10] k-ALMOST YAMABE SOLITONS ON KENMOTSU MANIFOLDS
    De, Krishnendu
    De, Uday Chand
    HONAM MATHEMATICAL JOURNAL, 2021, 43 (01): : 115 - 122