Multilevel quasi-Monte Carlo for optimization under uncertainty

被引:2
作者
Guth, Philipp A. [1 ]
Van Barel, Andreas [2 ]
机构
[1] Johann Radon Inst Computat & Appl Math, OAW, Altenbergerstr 69, A-4040 Linz, Austria
[2] Katholieke Univ Leuven, Dept Comp Sci, Celestijnenlaan 200A, B-3001 Leuven, Belgium
关键词
65D30; 65D32; 35Q93; 65C05; 49M41; 35R60; ELLIPTIC PDES; RANDOM-COEFFICIENTS; ALGORITHM;
D O I
10.1007/s00211-023-01364-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the problem of optimizing the average tracking error for an elliptic partial differential equation with an uncertain lognormal diffusion coefficient. In particular, the application of the multilevel quasi-Monte Carlo (MLQMC) method to the estimation of the gradient is investigated, with a circulant embedding method used to sample the stochastic field. A novel regularity analysis of the adjoint variable is essential for the MLQMC estimation of the gradient in combination with the samples generated using the circulant embedding method. A rigorous cost and error analysis shows that a randomly shifted quasi-Monte Carlo method leads to a faster rate of decay in the root mean square error of the gradient than the ordinary Monte Carlo method, while considering multiple levels substantially reduces the computational effort. Numerical experiments confirm the improved rate of convergence and show that the MLQMC method outperforms the multilevel Monte Carlo method and single level quasi-Monte Carlo method.
引用
收藏
页码:443 / 484
页数:42
相关论文
共 36 条
  • [1] Adler R.J., 1981, GEOMETRY RANDOM FIEL
  • [2] [Anonymous], 1946, La Revue Scientifique
  • [3] Borz A., 2012, Computational optimization of systems governed by partial differential equations
  • [4] A POD framework to determine robust controls in PDE optimization
    Borzi, A.
    von Winckel, G.
    [J]. COMPUTING AND VISUALIZATION IN SCIENCE, 2011, 14 (03) : 91 - 103
  • [5] MULTIGRID METHODS AND SPARSE-GRID COLLOCATION TECHNIQUES FOR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH RANDOM COEFFICIENTS
    Borzi, A.
    von Winckel, G.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (03) : 2172 - 2192
  • [6] AS 312 - An algorithm for simulating stationary Gaussian random fields
    Chan, G
    Wood, ATA
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1997, 46 (01) : 171 - 181
  • [7] FINITE ELEMENT ERROR ANALYSIS OF ELLIPTIC PDES WITH RANDOM COEFFICIENTS AND ITS APPLICATION TO MULTILEVEL MONTE CARLO METHODS
    Charrier, J.
    Scheichl, R.
    Teckentrup, A. L.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 322 - 352
  • [8] Weighted Reduced Basis Method for Stochastic Optimal Control Problems with Elliptic PDE Constraint
    Chen, Peng
    Quarteroni, Alfio
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2014, 2 (01): : 364 - 396
  • [9] Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients
    Cliffe, K. A.
    Giles, M. B.
    Scheichl, R.
    Teckentrup, A. L.
    [J]. COMPUTING AND VISUALIZATION IN SCIENCE, 2011, 14 (01) : 3 - 15
  • [10] Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs
    Cohen, Albert
    DeVore, Ronald
    Schwab, Christoph
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2010, 10 (06) : 615 - 646