Automated Program Repair in the Era of Large Pre-trained Language Models

被引:106
|
作者
Xia, Chunqiu Steven [1 ]
Wei, Yuxiang [1 ]
Zhang, Lingming [1 ]
机构
[1] Univ Illinois, Champaign, IL 61820 USA
来源
2023 IEEE/ACM 45TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ICSE | 2023年
关键词
CODE;
D O I
10.1109/ICSE48619.2023.00129
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Automated Program Repair (APR) aims to help developers automatically patch software bugs. However, current state-of-the-art traditional and learning-based APR techniques face the problem of limited patch variety, failing to fix complicated bugs. This is mainly due to the reliance on bug-fixing datasets to craft fix templates (traditional) or directly predict potential patches (learning-based). Large Pre-Trained Language Models (LLMs), trained using billions of text/code tokens, can potentially help avoid this issue. Very recently, researchers have directly leveraged LLMs for APR without relying on any bugfixing datasets. Meanwhile, such existing work either failed to include state-of-the-art LLMs or was not evaluated on realistic datasets. Thus, the true power of modern LLMs on the important APR problem is yet to be revealed. In this work, we perform the first extensive study on directly applying LLMs for APR. We select 9 recent state-of-the-art LLMs, including both generative and infilling models, ranging from 125M to 20B in size. We designed 3 different repair settings to evaluate the different ways we can use LLMs to generate patches: 1) generate the entire patch function, 2) fill in a chunk of code given the prefix and suffix 3) output a single line fix. We apply the LLMs under these repair settings on 5 datasets across 3 different languages and compare different LLMs in the number of bugs fixed, generation speed and compilation rate. We also compare the LLMs against recent state-of-the-art APR tools. Our study demonstrates that directly applying state-ofthe-art LLMs can already substantially outperform all existing APR techniques on all our datasets. Among the studied LLMs, the scaling effect exists for APR where larger models tend to achieve better performance. Also, we show for the first time that suffix code after the buggy line (adopted in infilling-style APR) is important in not only generating more fixes but more patches with higher compilation rate. Besides patch generation, the LLMs consider correct patches to be more natural than other ones, and can even be leveraged for effective patch ranking or patch correctness checking. Lastly, we show that LLM-based APR can be further substantially boosted via: 1) increasing the sample size, and 2) incorporating fix template information.
引用
收藏
页码:1482 / 1494
页数:13
相关论文
共 50 条
  • [31] From Cloze to Comprehension: Retrofitting Pre-trained Masked Language Models to Pre-trained Machine Reader
    Xu, Weiwen
    Li, Xin
    Zhang, Wenxuan
    Zhou, Meng
    Lam, Wai
    Si, Luo
    Bing, Lidong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [32] Pre-trained models for natural language processing: A survey
    Qiu XiPeng
    Sun TianXiang
    Xu YiGe
    Shao YunFan
    Dai Ning
    Huang XuanJing
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (10) : 1872 - 1897
  • [33] Analyzing Individual Neurons in Pre-trained Language Models
    Durrani, Nadir
    Sajjad, Hassan
    Dalvi, Fahim
    Belinkov, Yonatan
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 4865 - 4880
  • [34] Probing Pre-Trained Language Models for Disease Knowledge
    Alghanmi, Israa
    Espinosa-Anke, Luis
    Schockaert, Steven
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 3023 - 3033
  • [35] Emotional Paraphrasing Using Pre-trained Language Models
    Casas, Jacky
    Torche, Samuel
    Daher, Karl
    Mugellini, Elena
    Abou Khaled, Omar
    2021 9TH INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION WORKSHOPS AND DEMOS (ACIIW), 2021,
  • [36] Impact of Morphological Segmentation on Pre-trained Language Models
    Westhelle, Matheus
    Bencke, Luciana
    Moreira, Viviane P.
    INTELLIGENT SYSTEMS, PT II, 2022, 13654 : 402 - 416
  • [37] Dynamic Knowledge Distillation for Pre-trained Language Models
    Li, Lei
    Lin, Yankai
    Ren, Shuhuai
    Li, Peng
    Zhou, Jie
    Sun, Xu
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 379 - 389
  • [38] Prompt Tuning for Discriminative Pre-trained Language Models
    Yao, Yuan
    Dong, Bowen
    Zhang, Ao
    Zhang, Zhengyan
    Xie, Ruobing
    Liu, Zhiyuan
    Lin, Leyu
    Sun, Maosong
    Wang, Jianyong
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), 2022, : 3468 - 3473
  • [39] A Close Look into the Calibration of Pre-trained Language Models
    Chen, Yangyi
    Yuan, Lifan
    Cui, Ganqu
    Liu, Zhiyuan
    Ji, Heng
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 1343 - 1367
  • [40] Deep Entity Matching with Pre-Trained Language Models
    Li, Yuliang
    Li, Jinfeng
    Suhara, Yoshihiko
    Doan, AnHai
    Tan, Wang-Chiew
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2020, 14 (01): : 50 - 60