Duality and LP Bounds for Codes with Locality

被引:0
作者
Gruica, Anina [1 ]
Jany, Benjamin [2 ]
Ravagnani, Alberto [1 ]
机构
[1] Eindhoven Univ Technol, Dept Math & Comp Sci, Eindhoven, Netherlands
[2] Univ Kentucky, Dept Math, Lexington, KY USA
来源
2023 IEEE INFORMATION THEORY WORKSHOP, ITW | 2023年
基金
荷兰研究理事会;
关键词
locality; locally recoverable code; duality; linear programming; LP bound; dual distance; MacWilliams identities; REPAIRABLE CODES; CONSTRUCTIONS;
D O I
10.1109/ITW55543.2023.10161676
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We initiate the study of the duality theory of locally recoverable codes, with a focus on the applications. We characterize the locality of a code in terms of the dual code, and introduce a class of invariants that refine the classical weight distribution. In this context, we establish a duality theorem analogous to (but very different from) a MacWilliams identity. As an application of our results, we obtain two new bounds for the parameters of a locally recoverable code, including an LP bound that improves on the best available bounds in several instances.
引用
收藏
页码:347 / 352
页数:6
相关论文
共 26 条
  • [1] Combinatorial Alphabet-Dependent Bounds for Locally Recoverable Codes
    Agarwal, Abhishek
    Barg, Alexander
    Hu, Sihuang
    Mazumdar, Arya
    Tamo, Itzhak
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (05) : 3481 - 3492
  • [2] Balaji S. B., 2017, 2017 IEEE International Symposium on Information Theory (ISIT), P3155, DOI 10.1109/ISIT.2017.8007111
  • [3] Bounds on the Size of Locally Recoverable Codes
    Cadambe, Viveck R.
    Mazumdar, Arya
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (11) : 5787 - 5794
  • [4] On Optimal Locally Repairable Codes With Super-Linear Length
    Cai, Han
    Miao, Ying
    Schwartz, Moshe
    Tang, Xiaohu
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (08) : 4853 - 4868
  • [5] Improved Bounds and Singleton-Optimal Constructions of Locally Repairable Codes With Minimum Distance 5 and 6
    Chen, Bin
    Fang, Weijun
    Xia, Shu-Tao
    Hao, Jie
    Fu, Fang-Wei
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (01) : 217 - 231
  • [6] Fang WJ, 2022, Arxiv, DOI arXiv:2207.05479
  • [7] Fourier-reflexive partitions and MacWilliams identities for additive codes
    Gluesing-Luerssen, Heide
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2015, 75 (03) : 543 - 563
  • [8] On the Locality of Codeword Symbols
    Gopalan, Parikshit
    Huang, Cheng
    Simitci, Huseyin
    Yekhanin, Sergey
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (11) : 6925 - 6934
  • [9] Goparaju S, 2014, IEEE INT SYMP INFO, P676, DOI 10.1109/ISIT.2014.6874918
  • [10] How Long Can Optimal Locally Repairable Codes Be?
    Guruswami, Venkatesan
    Xing, Chaoping
    Yuan, Chen
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (06) : 3662 - 3670