Duality and LP Bounds for Codes with Locality

被引:0
作者
Gruica, Anina [1 ]
Jany, Benjamin [2 ]
Ravagnani, Alberto [1 ]
机构
[1] Eindhoven Univ Technol, Dept Math & Comp Sci, Eindhoven, Netherlands
[2] Univ Kentucky, Dept Math, Lexington, KY USA
来源
2023 IEEE INFORMATION THEORY WORKSHOP, ITW | 2023年
基金
荷兰研究理事会;
关键词
locality; locally recoverable code; duality; linear programming; LP bound; dual distance; MacWilliams identities; REPAIRABLE CODES; CONSTRUCTIONS;
D O I
10.1109/ITW55543.2023.10161676
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We initiate the study of the duality theory of locally recoverable codes, with a focus on the applications. We characterize the locality of a code in terms of the dual code, and introduce a class of invariants that refine the classical weight distribution. In this context, we establish a duality theorem analogous to (but very different from) a MacWilliams identity. As an application of our results, we obtain two new bounds for the parameters of a locally recoverable code, including an LP bound that improves on the best available bounds in several instances.
引用
收藏
页码:347 / 352
页数:6
相关论文
共 26 条
[1]   Combinatorial Alphabet-Dependent Bounds for Locally Recoverable Codes [J].
Agarwal, Abhishek ;
Barg, Alexander ;
Hu, Sihuang ;
Mazumdar, Arya ;
Tamo, Itzhak .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (05) :3481-3492
[2]  
Balaji S. B., 2017, 2017 IEEE International Symposium on Information Theory (ISIT), P3155, DOI 10.1109/ISIT.2017.8007111
[3]   Bounds on the Size of Locally Recoverable Codes [J].
Cadambe, Viveck R. ;
Mazumdar, Arya .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (11) :5787-5794
[4]   On Optimal Locally Repairable Codes With Super-Linear Length [J].
Cai, Han ;
Miao, Ying ;
Schwartz, Moshe ;
Tang, Xiaohu .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (08) :4853-4868
[5]   Improved Bounds and Singleton-Optimal Constructions of Locally Repairable Codes With Minimum Distance 5 and 6 [J].
Chen, Bin ;
Fang, Weijun ;
Xia, Shu-Tao ;
Hao, Jie ;
Fu, Fang-Wei .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (01) :217-231
[6]  
Fang WJ, 2022, Arxiv, DOI arXiv:2207.05479
[7]   Fourier-reflexive partitions and MacWilliams identities for additive codes [J].
Gluesing-Luerssen, Heide .
DESIGNS CODES AND CRYPTOGRAPHY, 2015, 75 (03) :543-563
[8]   On the Locality of Codeword Symbols [J].
Gopalan, Parikshit ;
Huang, Cheng ;
Simitci, Huseyin ;
Yekhanin, Sergey .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (11) :6925-6934
[9]  
Goparaju S, 2014, IEEE INT SYMP INFO, P676, DOI 10.1109/ISIT.2014.6874918
[10]   How Long Can Optimal Locally Repairable Codes Be? [J].
Guruswami, Venkatesan ;
Xing, Chaoping ;
Yuan, Chen .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (06) :3662-3670