Microstructure and mechanical properties of Ti-6Al-4V cruciform structure fabricated by coaxial electron beam wire-feed additive manufacturing

被引:8
|
作者
Wang, Mingzhi [1 ]
Hu, Jianan [1 ,2 ,3 ]
Zhu, Jing [1 ]
Zhang, Kai [1 ,4 ,5 ]
Kovalchuk, Dmytro [6 ]
Yang, Yi [1 ]
Wang, Hao [1 ]
Zhang, Lai-Chang [7 ]
Huang, Aijun [4 ,5 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Mat & Chem, Shanghai 200093, Peoples R China
[2] Chinese Acad Sci, Inst Met Res, Shi Changxu Innovat Ctr Adv Mat, 72 Wenhua Rd, Shenyang 110016, Peoples R China
[3] Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
[4] Monash Univ, Monash Ctr Addit Manufacture, Notting Hill, Vic 3168, Australia
[5] Monash Univ, Dept Mat Sci & Engn, Clayton, Vic 3800, Australia
[6] JSC NVO Chervona Hvilya, UA-03680 Kiev, Ukraine
[7] Edith Cowan Univ, Sch Engn, 270 Joondalup Dr, Perth, WA 6027, Australia
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Electron beam wire-feed additive; manufacturing; Ti-6Al-4V alloy; Cruciform structure; Microstructure; Mechanical properties; TITANIUM; COMPONENTS; STRATEGIES; BOUNDARY; TEXTURE; ORIGIN;
D O I
10.1016/j.jallcom.2023.170943
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Coaxial Electron Beam Wire-feed Additive Manufacturing (CAEBWAM), which is a novel additive manu-facturing process, can produce fully dense alloy components with equiaxed & beta; grains (EG & beta;) and isotropical mechanical properties and is considered as a potential manufacturing method for large-scale complex components. However, actual complex components inevitably include bonding regions, which are similar to welded joints, in the wire-feed deposition process, and limited knowledge is available on the micro-structures and mechanical properties for this kind of regions. This work thoroughly studied the micro-structures and mechanical properties of the Ti-6Al-4V alloy cruciform structure fabricated by CAEBWAM. It was found that the microstructure at the Bonding Zone (BZ) was composed of coarse columnar & beta; grains (CG & beta;), continuous grain boundary & alpha; (& alpha;GB) phase, and coarse & alpha; laths due to a higher temperature and poor heat dissipation condition. The average width of & alpha; lath in the BZ region was larger and the hardness was lower compared with those in the EG & beta; region. Tensile properties and fracture behaviours of the tensile samples extracted at cruciform structure were examined. The fracture tended to occur at the BZ region and exhibited a mixed fracture mode with trans-and inter-granular fractures. This work will improve the un-derstanding of microstructures and mechanical properties for representative cruciform structure in wire-feed AMed components, which would be conducive to further progress of the actual complex components.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Fine equiaxed β grains and superior tensile property in Ti-6Al-4V alloy deposited by coaxial electron beam wire feeding additive manufacturing
    Zhang, Jiahua
    Yang, Yi
    Cao, Sheng
    Cao, Zhiqiang
    Kovalchuk, Dmytro
    Wu, Songquan
    Liang, Enquan
    Zhang, Xi
    Chen, Wei
    Wu, Fan
    Huang, Aijun
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2020, 33 (10) : 1311 - 1320
  • [12] Effect of Heat Treatment on Microstructure and Tensile Properties of Ti-6Al-4V Alloy Produced by Coaxial Electron Beam Wire Feeding Additive Manufacturing
    Hu, Jianan
    Zhang, Jiahua
    Wei, Ya
    Chen, Hao
    Yang, Yi
    Wu, Songquan
    Kovalchuk, Dmytro
    Liang, Enquan
    Zhang, Xi
    Wang, Hao
    Huang, Aijun
    JOM, 2021, 73 (07) : 2241 - 2249
  • [13] Formability, microstructure and mechanical properties of Ti-6Al-4V deposited by wire and arc additive manufacturing with different deposition paths
    Zhou, Yefei
    Qin, Guangkuo
    Li, Lei
    Lu, Xin
    Jing, Ran
    Xing, Xiaolei
    Yang, Qingxiang
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 772
  • [14] A review on the fatigue behavior of Ti-6Al-4V fabricated by electron beam melting additive manufacturing
    Chern, Andrew H.
    Nandwana, Peeyush
    Yuan, Tao
    Kirka, Michael M.
    Dehoff, Ryan R.
    Liaw, Peter K.
    Duty, Chad E.
    INTERNATIONAL JOURNAL OF FATIGUE, 2019, 119 : 173 - 184
  • [15] Wire-Based Additive Manufacturing of Ti-6Al-4V Using Electron Beam Technique
    Pixner, Florian
    Warchomicka, Fernando
    Peter, Patrick
    Steuwer, Axel
    Colliander, Magnus Hornqvist
    Pederson, Robert
    Enzinger, Norbert
    MATERIALS, 2020, 13 (15)
  • [16] Microstructure and mechanical properties of Ti-6Al-4V/Ni-Ti functionally graded material fabricated by multi-wire arc additive manufacturing
    Han, Jian
    Meng, Meiqing
    Liu, Hongqiang
    Jiang, Zhengyi
    Zhao, Xiaoxin
    Xu, Youwei
    Tian, Yinbao
    Zhang, Xin
    SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2024, 29 (04) : 232 - 241
  • [17] Features of the Structural-Phase State of the Alloy Ti-6Al-4V in the Formation of Products using Wire-Feed Electron Beam Additive Manufacturing
    Savchenko, Nikolai
    Vorontsov, Andrey
    Utyaganova, Veronika
    Eliseev, Alexander
    Rubtsov, Valery
    Kolubaev, Evgeny
    OBRABOTKA METALLOV-METAL WORKING AND MATERIAL SCIENCE, 2018, 20 (04): : 60 - 71
  • [18] Microstructure and Properties of Laser Additive Repaired Electron Beam Welds in Ti-6Al-4V Alloy
    Cui, B-l.
    Liu, W-j.
    Bian, H-y.
    Zhang, K.
    Wang, H-r.
    LASERS IN ENGINEERING, 2025, 59 (1-3) : 19 - 38
  • [19] Microstructure and mechanical properties of Nb-alloyed austenitic CrNi steel fabricated by wire-feed electron beam additive manufacturing
    Panchenko, Marina Yu.
    Maier, Galina G.
    Moskvina, Valentina A.
    V. Astafurov, Sergey
    V. Melnikov, Evgenii
    Reunova, Kseniya A.
    Kolubaev, Evgenii A.
    Astafurova, Elena G.
    MATERIALS CHARACTERIZATION, 2022, 190
  • [20] Effect of germanium alloying on microstructure and properties of Ti-6Al-4V alloy fabricated by additive manufacturing
    Changfu Li
    Jiaqi Bu
    Xiangming Wang
    Guang Yang
    Applied Physics A, 2023, 129