Achieving high capacity retention for SnS2 anodes via the solvent-driven reversible conversion-alloying reactions

被引:8
作者
Choi, Yong-Seok [1 ,2 ]
Lee, Hyun-Min [3 ]
Moon, Joo-Yeon [3 ]
Scanlon, David O. [2 ,4 ,5 ]
Lee, Jae-Chul [3 ,6 ]
机构
[1] Dankook Univ, Dept Mat Sci & Engn, 119 Dandae ro, Cheonan 31116, South Korea
[2] UCL, Dept Chem, London WC1H 0AJ, England
[3] Korea Univ, Dept Mat Sci & Engn, Seoul 02841, South Korea
[4] UCL, Thomas Young Ctr, London WC1E 6BT, England
[5] Faraday Inst, Harwell Campus, Didcot OX11 0RA, England
[6] Korea Univ, Inst Green Mfg Technol, Seoul 02841, South Korea
基金
新加坡国家研究基金会; 英国工程与自然科学研究理事会;
关键词
Ab initio calculations; Battery; Electrochemistry; Phase diagrams; Phase transitions; Solvent effects; SODIUM-ION BATTERIES; PHASE-TRANSITION; TIN ANODES; MECHANISM; ENERGY;
D O I
10.1016/j.ensm.2023.102867
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite their large theoretical capacity (typically > 1000 mAh g � 1), anode materials featuring Na storage via a combined mechanism of conversion and alloying reactions are practically limited in Na-ion batteries owing to their poor initial Coulombic efficiency (typically -50%). Using SnS2 as an example, we present a model that elucidates the physics underpinning its inferior Coulombic efficiency by incorporating an understanding of the thermodynamics and kinetics of conversion-alloying reactions. The developed model show that conversionalloying reactions and their reversibility can be engineered by modulating the solvation tendency of electrolyte solvents, resulting in an enhanced initial Coulombic efficiency of > 70% (corresponding to 817 mAh g � 1) even without expensive pretreatment and the use of nanoscale SnS2 particle anodes. Thus, this study that correlates the solvent properties and first-cycle reversibility offers a solution for selecting appropriate electrolytes for designing high-energy-density anodes based on various sodium storage mechanisms.
引用
收藏
页数:9
相关论文
共 33 条
[1]   Characterization of sodium ion electrochemical reaction with tin anodes: Experiment and theory [J].
Baggetto, Loic ;
Ganesh, P. ;
Meisner, Roberta P. ;
Unocic, Raymond R. ;
Jumas, Jean-Claude ;
Bridges, Craig A. ;
Veith, Gabriel M. .
JOURNAL OF POWER SOURCES, 2013, 234 :48-59
[2]   Physical descriptor for the Gibbs energy of inorganic crystalline solids and temperature-dependent materials chemistry [J].
Bartel, Christopher J. ;
Millican, Samantha L. ;
Deml, Ann M. ;
Rumptz, John R. ;
Tumas, William ;
Weimer, Alan W. ;
Lany, Stephan ;
Stevanovic, Vladan ;
Musgrave, Charles B. ;
Holder, Aaron M. .
NATURE COMMUNICATIONS, 2018, 9
[3]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[4]   A universal graph deep learning interatomic potential for the periodic table [J].
Chen, Chi ;
Ong, Shyue Ping .
NATURE COMPUTATIONAL SCIENCE, 2022, 2 (11) :718-+
[5]   Ion-Solvent Chemistry-Inspired Cation-Additive Strategy to Stabilize Electrolytes for Sodium-Metal Batteries [J].
Chen, Xiang ;
Shen, Xin ;
Hou, Ting-Zheng ;
Zhang, Rui ;
Peng, Hong-Jie ;
Zhang, Qiang .
CHEM, 2020, 6 (09) :2242-2256
[6]   Intrinsic Defects and Their Role in the Phase Transition of Na-Ion Anode Na2Ti3O7 [J].
Choi, Yong-Seok ;
Costa, Sara I. R. ;
Tapia-Ruiz, Nuria ;
Scanlon, David O. .
ACS APPLIED ENERGY MATERIALS, 2023, 6 (01) :484-495
[7]   Characterizing multiple continuous phase transitions at an alloying anode with voltammetric measurements and first-principles calculations [J].
Choi, Yong-Seok ;
Lee, Jae-Chul .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (40) :23121-23129
[8]   Phase transition behaviors and formation of electrically resistive phases at the anode: major factors determining the energy efficiency of Li-ion batteries [J].
Choi, Yong-Seok ;
Lee, Jae-Chul .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (24) :11531-11541
[9]   First-Principles Investigation of the Li-Fe-F Phase Diagram and Equilibrium and Nonequilibrium Conversion Reactions of Iron Fluorides with Lithium [J].
Doe, Robert E. ;
Persson, Kristin A. ;
Meng, Y. Shirley ;
Ceder, Gerbrand .
CHEMISTRY OF MATERIALS, 2008, 20 (16) :5274-5283
[10]   A First-Principles Exploration of NaxSy Binary Phases at 1 atm and Under Pressure [J].
Geng, Nisha ;
Bi, Tiange ;
Zarifi, Niloofar ;
Yan, Yan ;
Zurek, Eva .
CRYSTALS, 2019, 9 (09)