Classification and deep-learning-based prediction of Alzheimer disease subtypes by using genomic data

被引:14
作者
Shigemizu, Daichi [1 ,2 ]
Akiyama, Shintaro [1 ]
Suganuma, Mutsumi [1 ]
Furutani, Motoki [1 ,3 ]
Yamakawa, Akiko [1 ]
Nakano, Yukiko [3 ]
Ozaki, Kouichi [1 ,2 ,3 ]
Niida, Shumpei [4 ]
机构
[1] Natl Ctr Geriatr & Gerontol, Res Inst, Med Genome Ctr, Obu, Aichi 4748511, Japan
[2] RIKEN Ctr Integrat Med Sci, Yokohama, Kanagawa 2300045, Japan
[3] Hiroshima Univ, Grad Sch Biomed & Hlth Sci, Dept Cardiovasc Med, Hiroshima 7348553, Japan
[4] Natl Ctr Geriatr & Gerontol, Core Facil Adm, Res Inst, Obu, Aichi 4748511, Japan
关键词
NF-KAPPA-B; ASSOCIATION WORKGROUPS; DIAGNOSTIC GUIDELINES; NATIONAL INSTITUTE; RECOMMENDATIONS; VARIANTS; DEMENTIA; ETIOLOGY; RNA;
D O I
10.1038/s41398-023-02531-1
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Late-onset Alzheimer's disease (LOAD) is the most common multifactorial neurodegenerative disease among elderly people. LOAD is heterogeneous, and the symptoms vary among patients. Genome-wide association studies (GWAS) have identified genetic risk factors for LOAD but not for LOAD subtypes. Here, we examined the genetic architecture of LOAD based on Japanese GWAS data from 1947 patients and 2192 cognitively normal controls in a discovery cohort and 847 patients and 2298 controls in an independent validation cohort. Two distinct groups of LOAD patients were identified. One was characterized by major risk genes for developing LOAD (APOC1 and APOC1P1) and immune-related genes (RELB and CBLC). The other was characterized by genes associated with kidney disorders (AXDND1, FBP1, and MIR2278). Subsequent analysis of albumin and hemoglobin values from routine blood test results suggested that impaired kidney function could lead to LOAD pathogenesis. We developed a prediction model for LOAD subtypes using a deep neural network, which achieved an accuracy of 0.694 (2870/4137) in the discovery cohort and 0.687 (2162/3145) in the validation cohort. These findings provide new insights into the pathogenic mechanisms of LOAD.
引用
收藏
页数:8
相关论文
共 40 条
[1]   The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease [J].
Albert, Marilyn S. ;
DeKosky, Steven T. ;
Dickson, Dennis ;
Dubois, Bruno ;
Feldman, Howard H. ;
Fox, Nick C. ;
Gamst, Anthony ;
Holtzman, David M. ;
Jagust, William J. ;
Petersen, Ronald C. ;
Snyder, Peter J. ;
Carrillo, Maria C. ;
Thies, Bill ;
Phelps, Creighton H. .
ALZHEIMERS & DEMENTIA, 2011, 7 (03) :270-279
[2]   Reduced Regional Cerebral Blood Flow Relates to Poorer Cognition in Older Adults With Type 2 Diabetes [J].
Bangen, Katherine J. ;
Werhane, Madeleine L. ;
Weigand, Alexandra J. ;
Edmonds, Emily C. ;
Delano-Wood, Lisa ;
Thomas, Kelsey R. ;
Nation, Daniel A. ;
Evangelista, Nicole D. ;
Clark, Alexandra L. ;
Liu, Thomas T. ;
Bondi, Mark W. .
FRONTIERS IN AGING NEUROSCIENCE, 2018, 10
[3]   New insights into the genetic etiology of Alzheimer's disease and related dementias [J].
Bellenguez, Celine ;
Kucukali, Fahri ;
Jansen, Iris E. ;
Kleineidam, Luca ;
Moreno-Grau, Sonia ;
Amin, Najaf ;
Naj, Adam C. ;
Campos-Martin, Rafael ;
Grenier-Boley, Benjamin ;
Andrade, Victor ;
Holmans, Peter A. ;
Boland, Anne ;
Damotte, Vincent ;
van der Lee, Sven J. ;
Costa, Marcos R. ;
Kuulasmaa, Teemu ;
Yang, Qiong ;
De Rojas, Itziar ;
Bis, Joshua C. ;
Yaqub, Amber ;
Prokic, Ivana ;
Chapuis, Julien ;
Ahmad, Shahzad ;
Giedraitis, Vilmantas ;
Aarsland, Dag ;
Garcia-Gonzalez, Pablo ;
Abdelnour, Carla ;
Alarcon-Martin, Emilio ;
Alcolea, Daniel ;
Alegret, Montserrat ;
Alvarez, Ignacio ;
Alvarez, Victoria ;
Armstrong, Nicola J. ;
Tsolaki, Anthoula ;
Antunez, Carmen ;
Appollonio, Ildebrando ;
Arcaro, Marina ;
Archetti, Silvana ;
Arias Pastor, Alfonso ;
Arosio, Beatrice ;
Athanasiu, Lavinia ;
Bailly, Henri ;
Banaj, Nerisa ;
Baquero, Miquel ;
Barral, Sandra ;
Beiser, Alexa ;
Pastor, Ana Belen ;
Below, Jennifer E. ;
Benchek, Penelope ;
Benussi, Luisa .
NATURE GENETICS, 2022, 54 (04) :412-436
[4]   Metabolic profiling distinguishes three subtypes of Alzheimer's disease [J].
Bredesen, Dale E. .
AGING-US, 2015, 7 (08) :595-600
[5]   Heterogeneity of Regional Brain Atrophy Patterns Associated with Distinct Progression Rates in Alzheimer's Disease [J].
Byun, Min Soo ;
Kim, Song E. ;
Park, Jinsick ;
Yi, Dahyun ;
Choe, Young Min ;
Sohn, Bo Kyung ;
Choi, Hyo Jung ;
Baek, Hyewon ;
Han, Ji Young ;
Woo, Jong Inn ;
Lee, Dong Young .
PLOS ONE, 2015, 10 (11)
[6]   Benchmarking machine learning models for late-onset alzheimer's disease prediction from genomic data [J].
De Velasco Oriol, Javier ;
Vallejo, Edgar E. ;
Estrada, Karol ;
Tamez Pena, Jose Gerardo .
BMC BIOINFORMATICS, 2019, 20 (01)
[7]   STAR: ultrafast universal RNA-seq aligner [J].
Dobin, Alexander ;
Davis, Carrie A. ;
Schlesinger, Felix ;
Drenkow, Jorg ;
Zaleski, Chris ;
Jha, Sonali ;
Batut, Philippe ;
Chaisson, Mark ;
Gingeras, Thomas R. .
BIOINFORMATICS, 2013, 29 (01) :15-21
[8]   The E3 Ubiquitin Ligase c-Cbl Inhibits Microglia-Mediated CNS Inflammation by Regulating PI3K/Akt/NF-κB Pathway [J].
Dong, Lin ;
Li, Yu-Zhen ;
An, Hai-Ting ;
Wang, Ya-Long ;
Chen, Shi-Hao ;
Qian, Yan-Jing ;
Wang, Ke ;
Zhen, Jun-Li ;
Fan, Zheng ;
Gong, Xiao-Li ;
Zheng, Yan ;
Wang, Xiao-Min .
CNS NEUROSCIENCE & THERAPEUTICS, 2016, 22 (08) :661-669
[9]  
dos Santos LR, 2020, GENET MOL BIOL, V43, DOI [10.1590/1678-4685-GMB-2018-0320, 10.1590/1678-4685-gmb-2018-0320]
[10]   Energy landscape analysis of neuroimaging data [J].
Ezaki, Takahiro ;
Watanabe, Takamitsu ;
Ohzeki, Masayuki ;
Masuda, Naoki .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 375 (2096)