Existence of Solutions for a Quasilinear Schrodinger Equation with Potential Vanishing

被引:0
作者
Xue, Yan-fang [1 ]
Han, Jian-xin [1 ]
Zhu, Xin-cai [1 ]
机构
[1] Xinyang Normal Univ, Sch Math & Stat, Xinyang 464000, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
quasilinear Schrodinger equation; vanishing potential; asymptotically cubic; mountain pass theorem; SOLITON-SOLUTIONS;
D O I
10.1007/s10255-023-1083-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the following quasilinear Schrodinger equation -Delta u + V(x)u-Delta(u(2))u = K(x)g(u); x epsilon R-3; where the nonlinearity g (u) is asymptotically cubic at infinity, the potential V (x) may vanish at infinity. Under appropriate assumptions on K(x), we establish the existence of a nontrivial solution by using the mountain pass theorem.
引用
收藏
页码:696 / 706
页数:11
相关论文
共 22 条
[1]   Existence of solutions for a quasilinear Schrodinger equation with vanishing potentials [J].
Aires, Jose F. L. ;
Souto, Marco A. S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (02) :924-946
[2]  
[Anonymous], 1997, Minimax Theorems
[3]   Blow-Up Phenomena and Asymptotic Profiles Passing from H1-Critical to Super-Critical Quasilinear Schrodinger Equations [J].
Cassani, Daniele ;
Wang, Youjun .
ADVANCED NONLINEAR STUDIES, 2021, 21 (04) :855-874
[4]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226
[5]   POSITIVE SOLUTIONS FOR QUASILINEAR SCHRODINGER EQUATIONS WITH CRITICAL GROWTH AND POTENTIAL VANISHING AT INFINITY [J].
Deng, Yinbin ;
Shuai, Wei .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (06) :2273-2287
[6]   QUASILINEAR SCHRODINGER EQUATIONS INVOLVING CONCAVE AND CONVEX NONLINEARITIES [J].
do O, Joao Marcos ;
Severo, Uberlandio .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (02) :621-644
[7]   EXISTENCE AND MULTIPLICITY RESULTS FOR GENERAL QUASILINEAR ELLIPTIC EQUATIONS [J].
Dong, Xiaojing ;
Mao, Anmin .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (04) :4965-4984
[8]   A POSITIVE SOLUTION FOR AN ASYMPTOTICALLY CUBIC QUASILINEAR SCHRODINGER EQUATION [J].
Fang, Xiang-Dong .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (01) :51-64
[9]   Multiple solutions for a quasilinear Schrodinger equation [J].
Fang, Xiang-Dong ;
Szulkin, Andrzej .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (04) :2015-2032
[10]   Quasilinear elliptic problems under asymptotically linear conditions at infinity and at the origin [J].
Furtado, Marcelo F. ;
Silva, Edcarlos D. ;
Silva, Maxwell L. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (02) :277-291