Puerarin inhibited oxidative stress and alleviated cerebral ischemia-reperfusion injury through PI3K/Akt/Nrf2 signaling pathway

被引:37
|
作者
Zhang, Qianqian [1 ,2 ,3 ]
Yao, Min [1 ,2 ,3 ]
Qi, Jiajia [1 ,2 ,3 ]
Song, Rui [1 ]
Wang, Lei [1 ,2 ,3 ]
Li, Jiacheng [1 ,2 ,3 ]
Zhou, Xian [6 ]
Chang, Dennis [6 ]
Huang, Qi [1 ,2 ,5 ]
Li, Lili [1 ,2 ,3 ,4 ]
Wang, Ning [1 ,2 ,3 ,4 ]
机构
[1] Anhui Univ Chinese Med, Dept Pharm, Hefei, Peoples R China
[2] Anhui Univ Chinese Med, Anhui Prov Key Lab Res & Dev Chinese Med, Hefei, Peoples R China
[3] Anhui Univ Chinese Med, Anhui Prov Key Lab Chinese Med Formula, Hefei, Peoples R China
[4] Anhui Acad Tradit Chinese Med, Inst Pharmacodynam & Safety Evaluat Chinese Med, Hefei, Peoples R China
[5] Anhui Univ Chinese Med, Anhui Prov Key Lab Pharmaceut Preparat Technol & A, Hefei, Peoples R China
[6] Western Sydney Univ, Natl Inst Complementary Med, Westmead, NSW, Australia
关键词
cerebral ischemia reperfusion injury (CIRI); puerarin; hippocampal neurons; oxidative stress; PI3K; Akt; Nrf2; pathway; HIPPOCAMPAL-NEURONS; ACTIVATION; STROKE; BRAIN; HO-1;
D O I
10.3389/fphar.2023.1134380
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Introduction: Puerarin (PUE) is a natural compound isolated from Puerariae Lobatae Radix, which has a neuroprotective effect on IS. We explored the therapeutic effect and underlying mechanism of PUE on cerebral I/R injury by inhibiting oxidative stress related to the PI3K/Akt/Nrf2 pathway in vitro and in vivo.Methods: The middle cerebral artery occlusion and reperfusion (MCAO/R) rats and oxygen-glucose deprivation and reperfusion (OGD/R) were selected as the models, respectively. The therapeutic effect of PUE was observed using triphenyl tetrazolium and hematoxylin-eosin staining. Tunel-NeuN staining and Nissl staining to quantify hippocampal apoptosis. The reactive oxygen species (ROS) level was detected by flow cytometry and immunofluorescence. Biochemical method to detect oxidative stress levels. The protein expression related to PI3K/Akt/Nrf2 pathway was detected by using Western blotting. Finally, co-immunoprecipitation was used to study the molecular interaction between Keap1 and Nrf2.Results: In vivo and vitro studies showed that PUE improved neurological deficits in rats, as well as decreased oxidative stress. Immunofluorescence and flow cytometry indicated that the release of ROS can be inhibited by PUE. In addition, the Western blotting results showed that PUE promoted the phosphorylation of PI3K and Akt, and enabled Nrf2 to enter the nucleus, which further activated the expression of downstream antioxidant enzymes such as HO-1. The combination of PUE with PI3K inhibitor LY294002 reversed these results. Finally, co-immunoprecipitation results showed that PUE promoted Nrf2-Keap1 complex dissociation.Discussion: Taken together, PUE can activate Nrf2 via PI3K/Akt and promote downstream antioxidant enzyme expression, which could further ameliorate oxidative stress, against I/R-induced Neuron injury.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Protective Effects of Propofol on Rats with Cerebral Ischemia-Reperfusion Injury Via the PI3K/Akt Pathway
    Chen, Yaru
    Li, Zhenzhou
    JOURNAL OF MOLECULAR NEUROSCIENCE, 2021, 71 (04) : 810 - 820
  • [22] Pachymic acid protects against cerebral ischemia/reperfusion injury by the PI3K/Akt signaling pathway
    Pang, Yingqiao
    Zhu, Shaozhi
    Pei, Haitao
    METABOLIC BRAIN DISEASE, 2020, 35 (04) : 673 - 680
  • [23] Protective Effect of Tempol on Acute Kidney Injury Through PI3K/Akt/Nrf2 Signaling Pathway
    Zhang, Gensheng
    Wang, Qiaoling
    Zhou, Qin
    Wang, Renjun
    Xu, Minze
    Wang, Huiping
    Wang, Lei
    Wilcox, Christopher S.
    Liu, Ruisheng
    Lai, En Yin
    KIDNEY & BLOOD PRESSURE RESEARCH, 2016, 41 (02) : 129 - 138
  • [24] The Effect of Angelica sinensis Polysaccharide on Neuronal Apoptosis in Cerebral Ischemia-Reperfusion Injury via PI3K/AKT Pathway
    Xu, Haibo
    Chen, Jing
    Liu, Wenbing
    Li, Hui
    Yu, Zhenghong
    Zeng, Chao
    INTERNATIONAL JOURNAL OF POLYMER SCIENCE, 2021, 2021
  • [25] Ibrutinib ameliorates cerebral ischemia/reperfusion injury through autophagy activation and PI3K/Akt/mTOR signaling pathway in diabetic mice
    Jin, Lei
    Mo, Yun
    Yue, Er-Li
    Liu, Yuan
    Liu, Kang-Yong
    BIOENGINEERED, 2021, 12 (01) : 7432 - 7445
  • [26] Vinpocetine Protects Against Cerebral Ischemia-Reperfusion Injury by Targeting Astrocytic Connexin43 via the PI3K/AKT Signaling Pathway
    Zhao, Mingming
    Hou, Shuai
    Feng, Liangshu
    Shen, Pingping
    Nan, Di
    Zhang, Yunhai
    Wang, Famin
    Ma, Di
    Feng, Jiachun
    FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [27] Diosmetin alleviated cerebral ischemia/reperfusion injury in vivo and in vitro by inhibiting oxidative stress via the SIRT1/Nrf2 signaling pathway
    Mei, Zhigang
    Du, Lipeng
    Liu, Xiaolu
    Chen, Xiangyu
    Tian, Huan
    Deng, Yihui
    Zhang, Wenli
    FOOD & FUNCTION, 2022, 13 (01) : 198 - 212
  • [28] The Role of Nrf2 in Relieving Cerebral Ischemia-Reperfusion Injury
    Sun, Yu
    Yang, Xu
    Xu, Lijun
    Jia, Mengxiao
    Zhang, Limeng
    Li, Peng
    Yang, Pengfei
    CURRENT NEUROPHARMACOLOGY, 2023, 21 (06) : 1405 - 1420
  • [29] Knocking down TNFAIP1 alleviates inflammation and oxidative stress in pediatric pneumonia through PI3K/Akt/Nrf2 pathway
    Chen, Jing
    Zhao, Mengtian
    Fang, Wei
    Du, Chaojun
    ALLERGOLOGIA ET IMMUNOPATHOLOGIA, 2023, 51 (04) : 94 - 100
  • [30] Oxymatrine ameliorates renal ischemia-reperfusion injury from oxidative stress through Nrf2/HO-1 pathway
    Jiang, Guanjun
    Liu, Xiuheng
    Wang, Min
    Chen, Hui
    Chen, Zhiyuan
    Qiu, Tao
    ACTA CIRURGICA BRASILEIRA, 2015, 30 (06) : 422 - 429