Puerarin inhibited oxidative stress and alleviated cerebral ischemia-reperfusion injury through PI3K/Akt/Nrf2 signaling pathway

被引:37
|
作者
Zhang, Qianqian [1 ,2 ,3 ]
Yao, Min [1 ,2 ,3 ]
Qi, Jiajia [1 ,2 ,3 ]
Song, Rui [1 ]
Wang, Lei [1 ,2 ,3 ]
Li, Jiacheng [1 ,2 ,3 ]
Zhou, Xian [6 ]
Chang, Dennis [6 ]
Huang, Qi [1 ,2 ,5 ]
Li, Lili [1 ,2 ,3 ,4 ]
Wang, Ning [1 ,2 ,3 ,4 ]
机构
[1] Anhui Univ Chinese Med, Dept Pharm, Hefei, Peoples R China
[2] Anhui Univ Chinese Med, Anhui Prov Key Lab Res & Dev Chinese Med, Hefei, Peoples R China
[3] Anhui Univ Chinese Med, Anhui Prov Key Lab Chinese Med Formula, Hefei, Peoples R China
[4] Anhui Acad Tradit Chinese Med, Inst Pharmacodynam & Safety Evaluat Chinese Med, Hefei, Peoples R China
[5] Anhui Univ Chinese Med, Anhui Prov Key Lab Pharmaceut Preparat Technol & A, Hefei, Peoples R China
[6] Western Sydney Univ, Natl Inst Complementary Med, Westmead, NSW, Australia
关键词
cerebral ischemia reperfusion injury (CIRI); puerarin; hippocampal neurons; oxidative stress; PI3K; Akt; Nrf2; pathway; HIPPOCAMPAL-NEURONS; ACTIVATION; STROKE; BRAIN; HO-1;
D O I
10.3389/fphar.2023.1134380
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Introduction: Puerarin (PUE) is a natural compound isolated from Puerariae Lobatae Radix, which has a neuroprotective effect on IS. We explored the therapeutic effect and underlying mechanism of PUE on cerebral I/R injury by inhibiting oxidative stress related to the PI3K/Akt/Nrf2 pathway in vitro and in vivo.Methods: The middle cerebral artery occlusion and reperfusion (MCAO/R) rats and oxygen-glucose deprivation and reperfusion (OGD/R) were selected as the models, respectively. The therapeutic effect of PUE was observed using triphenyl tetrazolium and hematoxylin-eosin staining. Tunel-NeuN staining and Nissl staining to quantify hippocampal apoptosis. The reactive oxygen species (ROS) level was detected by flow cytometry and immunofluorescence. Biochemical method to detect oxidative stress levels. The protein expression related to PI3K/Akt/Nrf2 pathway was detected by using Western blotting. Finally, co-immunoprecipitation was used to study the molecular interaction between Keap1 and Nrf2.Results: In vivo and vitro studies showed that PUE improved neurological deficits in rats, as well as decreased oxidative stress. Immunofluorescence and flow cytometry indicated that the release of ROS can be inhibited by PUE. In addition, the Western blotting results showed that PUE promoted the phosphorylation of PI3K and Akt, and enabled Nrf2 to enter the nucleus, which further activated the expression of downstream antioxidant enzymes such as HO-1. The combination of PUE with PI3K inhibitor LY294002 reversed these results. Finally, co-immunoprecipitation results showed that PUE promoted Nrf2-Keap1 complex dissociation.Discussion: Taken together, PUE can activate Nrf2 via PI3K/Akt and promote downstream antioxidant enzyme expression, which could further ameliorate oxidative stress, against I/R-induced Neuron injury.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Dexmedetomidine alleviates cerebral ischemia-reperfusion injury via inhibiting autophagy through PI3K/Akt/mTOR pathway
    Li, Jianli
    Wang, Keyan
    Liu, Meinv
    He, Jinhua
    Zhang, Huanhuan
    Liu, Huan
    JOURNAL OF MOLECULAR HISTOLOGY, 2023, 54 (03) : 173 - 181
  • [12] 6'-O-Galloylpaeoniflorin Attenuates Cerebral Ischemia Reperfusion-Induced Neuroinflammation and Oxidative Stress via PI3K/Akt/Nrf2 Activation
    Wen, Zhongmei
    Hou, Weichen
    Wu, Wei
    Zhao, Yang
    Dong, Xuechao
    Bai, Xiaoxue
    Peng, Liping
    Song, Lei
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2018, 2018
  • [13] Diterpene ginkgolides protect against cerebral ischemia/reperfusion damage in rats by activating Nrf2 and CREB through PI3K/Akt signaling
    Wen Zhang
    Jun-ke Song
    Rong Yan
    Li Li
    Zhi-yong Xiao
    Wen-xia Zhou
    Zhen-zhong Wang
    Wei Xiao
    Guan-hua Du
    Acta Pharmacologica Sinica, 2018, 39 : 1259 - 1272
  • [14] Neuroprotective effects of metformin on cerebral ischemia-reperfusion injury by regulating PI3K/Akt pathway
    Ruan, Cailian
    Guo, Hongtao
    Gao, Jiaqi
    Wang, Yiwei
    Liu, Zhiyong
    Yan, Jinyi
    Li, Xiaoji
    Lv, Haixia
    BRAIN AND BEHAVIOR, 2021, 11 (10):
  • [15] TIGAR Ameliorates Pulmonary Ischemia-Reperfusion Injury by Activating PI3K/Akt Signaling Pathway
    Xu, Aiping
    Xia, Xiuli
    Xu, Ting
    Liu, Ruxia
    JOURNAL OF BIOLOGICAL REGULATORS AND HOMEOSTATIC AGENTS, 2023, 37 (04) : 2031 - 2042
  • [16] Britanin Ameliorates Cerebral Ischemia-Reperfusion Injury by Inducing the Nrf2 Protective Pathway
    Wu, Guozhen
    Zhu, Lili
    Yuan, Xing
    Chen, Hao
    Xiong, Rui
    Zhang, Shoude
    Cheng, Hao
    Shen, Yunheng
    An, Huazhang
    Li, Tiejun
    Li, Honglin
    Zhang, Weidong
    ANTIOXIDANTS & REDOX SIGNALING, 2017, 27 (11) : 754 - 768
  • [17] Remimazolam Suppresses Oxidative Stress and Apoptosis in Cerebral Ischemia/Reperfusion Injury by Regulating AKT/GSK-3(3/NRF2 Pathway
    Duan, Mei
    Yu, Ning
    Liu, Jia
    Zhao, Yang
    Zhang, Jing
    Song, Siyi
    Wang, Shilei
    DRUG DESIGN DEVELOPMENT AND THERAPY, 2025, 19 : 111 - 128
  • [18] The bone marrow mononuclear cells reduce the oxidative stress of cerebral infarction through PI3K/AKT/NRF2 signaling pathway
    Chen, N. -N.
    Wang, J. -P.
    Liu, H. -F.
    Zhang, M.
    Zhao, Y. -Z.
    Fu, X. -J.
    Yu, L.
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2017, 21 (24) : 5729 - 5735
  • [19] Ergothioneine Protects Against UV-Induced Oxidative Stress Through the PI3K/AKT/Nrf2 Signaling Pathway
    Li, Yongchao
    Gao, Jinfeng
    Liu, Shuhua
    Chen, Shijian
    Wei, Xiaoyue
    Guan, Yalun
    Li, Xuejiao
    Li, Yunfeng
    Huang, Zhongqiang
    Li, Ge
    Zhao, Yuhong
    Liu, Pinghua
    Zhang, Yu
    CLINICAL COSMETIC AND INVESTIGATIONAL DERMATOLOGY, 2024, 17 : 1309 - 1319
  • [20] Electroacupuncture improves learning and memory functions in a rat cerebral ischemia/reperfusion injury model through PI3K/Akt signaling pathway activation
    Wang, Hui-Ling
    Liu, Fei-Lai
    Li, Rui-Qing
    Wan, Ming-Yue
    Li, Jie-Ying
    Shi, Jing
    Wu, Ming-Li
    Chen, Jun-Hua
    Sun, Wei-Juan
    Feng, Hong-Xia
    Zhao, Wei
    Huang, Jin
    Liu, Ren-Chao
    Hao, Wen-Xue
    Feng, Xiao-Dong
    NEURAL REGENERATION RESEARCH, 2021, 16 (06) : 1011 - 1016