Spatial-temporal Cellular Traffic Prediction: A Novel Method Based on Causality and Graph Attention Network

被引:1
|
作者
Chen, Xiangyu [1 ]
Chuai, Gang [1 ]
Zhang, Kaisa [1 ]
Gao, Weidong [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Key Lab Univ Wireless Commun, Minist Educ, Beijing 100876, Peoples R China
来源
2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC | 2023年
关键词
cellular traffic prediction; graph neural network; causal structure learning; GAT;
D O I
10.1109/WCNC55385.2023.10118616
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Cellular traffic prediction is crucial for intelligent network operations, such as load-aware resource management and proactive network optimization. In this paper, to explicitly characterize the temporal dependence and spatial relationship of nonstationary real-world cellular traffic, we propose a novel prediction method. First, we decompose traffic data into three components which represent various cellular traffic patterns. Second, to capture the spatial relationship among base stations (BSs), we model each component as a directed causal graph by variable-lag transfer entropy (VLTE) based causal structure learning. Third, we design a deep learning model combining graph attention network (GAT) and gated recurrent unit (GRU) to predict each component. GRU is used to capture temporal dependence. GAT is trained to quantitatively analyze spatial relationship and aggregate spatial features. Finally, we integrate the prediction results of three components to obtain the cellular traffic prediction result. We conduct extensive experiments on real-world traffic data, and the results show that our proposed method outperforms other common methods.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A multi-view attention-based spatial-temporal network for airport arrival flow prediction
    Yan, Zhen
    Yang, Hongyu
    Wu, Yuankai
    Lin, Yi
    TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, 2023, 170
  • [42] Spatial-temporal dynamic semantic graph neural network
    Rui Zhang
    Fei Xie
    Rui Sun
    Lei Huang
    Xixiang Liu
    Jianjun Shi
    Neural Computing and Applications, 2022, 34 : 16655 - 16668
  • [43] Spatial-temporal dynamic semantic graph neural network
    Zhang, Rui
    Xie, Fei
    Sun, Rui
    Huang, Lei
    Liu, Xixiang
    Shi, Jianjun
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (19) : 16655 - 16668
  • [44] Multi-view Cascading Spatial-Temporal Graph Neural Network for Traffic Flow Forecasting
    Liu, Zibo
    Fu, Kaiqun
    Liu, Xiaotong
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT II, 2022, 13530 : 605 - 616
  • [45] ConSTGAT: Contextual Spatial-Temporal Graph Attention Network for Travel Time Estimation at Baidu Maps
    Fang, Xiaomin
    Huang, Jizhou
    Wang, Fan
    Zeng, Lingke
    Liang, Haijin
    Wang, Haifeng
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 2697 - 2705
  • [46] Cross-User Electromyography Pattern Recognition Based on a Novel Spatial-Temporal Graph Convolutional Network
    Xu, Mengjuan
    Chen, Xiang
    Ruan, Yuwen
    Zhang, Xu
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 : 72 - 82
  • [47] A graph-attention based spatial-temporal learning framework for tourism demand forecasting
    Zhou, Binggui
    Dong, Yunxuan
    Yang, Guanghua
    Hou, Fen
    Hu, Zheng
    Xu, Suxiu
    Ma, Shaodan
    KNOWLEDGE-BASED SYSTEMS, 2023, 263
  • [48] Cross- and Context-Aware Attention Based Spatial-Temporal Graph Convolutional Networks for Human Mobility Prediction
    Mo, Zhaobin
    Xiang, Haotian
    Di, Xuan
    ACM TRANSACTIONS ON SPATIAL ALGORITHMS AND SYSTEMS, 2024, 10 (04)
  • [49] Automated diagnosis of schizophrenia based on spatial-temporal residual graph convolutional network
    Xu, Xinyi
    Zhu, Geng
    Li, Bin
    Lin, Ping
    Li, Xiaoou
    Wang, Zhen
    BIOMEDICAL ENGINEERING ONLINE, 2024, 23 (01)
  • [50] TC-GAT: Graph Attention Network for Temporal Causality Discovery
    Yuan, Xiaosong
    Chen, Ke
    Zuo, Wanli
    Zhang, Yijia
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,