Spatial-temporal Cellular Traffic Prediction: A Novel Method Based on Causality and Graph Attention Network

被引:1
|
作者
Chen, Xiangyu [1 ]
Chuai, Gang [1 ]
Zhang, Kaisa [1 ]
Gao, Weidong [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Key Lab Univ Wireless Commun, Minist Educ, Beijing 100876, Peoples R China
关键词
cellular traffic prediction; graph neural network; causal structure learning; GAT;
D O I
10.1109/WCNC55385.2023.10118616
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Cellular traffic prediction is crucial for intelligent network operations, such as load-aware resource management and proactive network optimization. In this paper, to explicitly characterize the temporal dependence and spatial relationship of nonstationary real-world cellular traffic, we propose a novel prediction method. First, we decompose traffic data into three components which represent various cellular traffic patterns. Second, to capture the spatial relationship among base stations (BSs), we model each component as a directed causal graph by variable-lag transfer entropy (VLTE) based causal structure learning. Third, we design a deep learning model combining graph attention network (GAT) and gated recurrent unit (GRU) to predict each component. GRU is used to capture temporal dependence. GAT is trained to quantitatively analyze spatial relationship and aggregate spatial features. Finally, we integrate the prediction results of three components to obtain the cellular traffic prediction result. We conduct extensive experiments on real-world traffic data, and the results show that our proposed method outperforms other common methods.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Traffic Flow Prediction Based on Spatial-Temporal Attention Convolutional Neural Network
    Xia Y.
    Liu M.
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2023, 58 (02): : 340 - 347
  • [32] Channel attention-based spatial-temporal graph neural networks for traffic prediction
    Wang, Bin
    Gao, Fanghong
    Tong, Le
    Zhang, Qian
    Zhu, Sulei
    DATA TECHNOLOGIES AND APPLICATIONS, 2023, 58 (01) : 81 - 94
  • [33] An improved dynamic Chebyshev graph convolution network for traffic flow prediction with spatial-temporal attention
    Lyuchao Liao
    Zhiyuan Hu
    Yuxin Zheng
    Shuoben Bi
    Fumin Zou
    Huai Qiu
    Maolin Zhang
    Applied Intelligence, 2022, 52 : 16104 - 16116
  • [34] An improved dynamic Chebyshev graph convolution network for traffic flow prediction with spatial-temporal attention
    Liao, Lyuchao
    Hu, Zhiyuan
    Zheng, Yuxin
    Bi, Shuoben
    Zou, Fumin
    Qiu, Huai
    Zhang, Maolin
    APPLIED INTELLIGENCE, 2022, 52 (14) : 16104 - 16116
  • [35] STAGCN: Spatial-Temporal Attention Graph Convolution Network for Traffic Forecasting
    Gu, Yafeng
    Deng, Li
    MATHEMATICS, 2022, 10 (09)
  • [36] Attention Based Multi-scale Spatial-temporal Fusion Propagation Graph Network for Traffic Flow Prediction
    Tian, Yuxin
    Zhang, Qiliang
    Li, Xiaomeng
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT II, ICIC 2024, 2024, 14876 : 125 - 136
  • [37] Spatial-temporal graph neural network traffic prediction based load balancing with reinforcement learning in cellular networks
    Liu, Shang
    He, Miao
    Wu, Zhiqiang
    Lu, Peng
    Gu, Weixi
    INFORMATION FUSION, 2024, 103
  • [38] Network Traffic Prediction Method Based on Multi-Channel Spatial-Temporal Graph Convolutional Networks
    He, Yechen
    Yang, Yang
    Zhao, Binnan
    Gao, Zhipeng
    Rui, Lanlan
    2022 IEEE 14TH INTERNATIONAL CONFERENCE ON ADVANCED INFOCOMM TECHNOLOGY (ICAIT 2022), 2022, : 25 - 30
  • [39] GMHANN: A Novel Traffic Flow Prediction Method for Transportation Management Based on Spatial-Temporal Graph Modeling
    Wang, Qing
    Liu, Weiping
    Wang, Xiumei
    Chen, Xinghong
    Chen, Guannan
    Wu, Qingxiang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (01) : 386 - 401
  • [40] A Spatial-Temporal Attention Approach for Traffic Prediction
    Shi, Xiaoming
    Qi, Heng
    Shen, Yanming
    Wu, Genze
    Yin, Baocai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (08) : 4909 - 4918