Spatial-temporal Cellular Traffic Prediction: A Novel Method Based on Causality and Graph Attention Network

被引:1
|
作者
Chen, Xiangyu [1 ]
Chuai, Gang [1 ]
Zhang, Kaisa [1 ]
Gao, Weidong [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Key Lab Univ Wireless Commun, Minist Educ, Beijing 100876, Peoples R China
来源
2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC | 2023年
关键词
cellular traffic prediction; graph neural network; causal structure learning; GAT;
D O I
10.1109/WCNC55385.2023.10118616
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Cellular traffic prediction is crucial for intelligent network operations, such as load-aware resource management and proactive network optimization. In this paper, to explicitly characterize the temporal dependence and spatial relationship of nonstationary real-world cellular traffic, we propose a novel prediction method. First, we decompose traffic data into three components which represent various cellular traffic patterns. Second, to capture the spatial relationship among base stations (BSs), we model each component as a directed causal graph by variable-lag transfer entropy (VLTE) based causal structure learning. Third, we design a deep learning model combining graph attention network (GAT) and gated recurrent unit (GRU) to predict each component. GRU is used to capture temporal dependence. GAT is trained to quantitatively analyze spatial relationship and aggregate spatial features. Finally, we integrate the prediction results of three components to obtain the cellular traffic prediction result. We conduct extensive experiments on real-world traffic data, and the results show that our proposed method outperforms other common methods.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] STGATE: Spatial-temporal graph attention network with a transformer encoder for EEG-based emotion recognition
    Li, Jingcong
    Pan, Weijian
    Huang, Haiyun
    Pan, Jiahui
    Wang, Fei
    FRONTIERS IN HUMAN NEUROSCIENCE, 2023, 17
  • [32] Spatial-temporal graph neural network for traffic forecasting: An overview and open research issues
    Khac-Hoai Nam Bui
    Jiho Cho
    Hongsuk Yi
    Applied Intelligence, 2022, 52 : 2763 - 2774
  • [33] A mobility aware network traffic prediction model based on dynamic graph attention spatio-temporal network
    Jin, Zilong
    Qian, Jun
    Kong, Zhixiang
    Pan, Chengsheng
    COMPUTER NETWORKS, 2023, 235
  • [34] Spatial-temporal graph neural network for traffic forecasting: An overview and open research issues
    Bui, Khac-Hoai Nam
    Cho, Jiho
    Yi, Hongsuk
    APPLIED INTELLIGENCE, 2022, 52 (03) : 2763 - 2774
  • [35] Gait Recognition Algorithm based on Spatial-temporal Graph Neural Network
    Lan, TianYi
    Shi, ZongBin
    Wang, KeJun
    Yin, ChaoQun
    2022 INTERNATIONAL CONFERENCE ON BIG DATA, INFORMATION AND COMPUTER NETWORK (BDICN 2022), 2022, : 55 - 58
  • [36] STMG: Spatial-Temporal Mobility Graph for Location Prediction
    Pan, Xuan
    Cai, Xiangrui
    Zhang, Jiangwei
    Wen, Yanlong
    Zhang, Ying
    Yuan, Xiaojie
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2021), PT I, 2021, 12681 : 667 - 675
  • [37] Dynamic Spatial-Temporal Graph Model for Disease Prediction
    Senthilkumar, Ashwin
    Gupte, Mihir
    Shridevi, S.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (06) : 950 - 957
  • [38] Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting
    Fang, Zheng
    Long, Qingqing
    Song, Guojie
    Xie, Kunqing
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 364 - 373
  • [39] Edge-Side Cellular Network Traffic Prediction Based on Trend Graph Characterization Network
    Hao, Mingxiang
    Sun, Xiaochuan
    Li, Yingqi
    Zhang, Haijun
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (06): : 6118 - 6129
  • [40] DBSTGNN-Att: Dual Branch Spatio-Temporal Graph Neural Network with an Attention Mechanism for Cellular Network Traffic Prediction
    Cai, Zengyu
    Tan, Chunchen
    Zhang, Jianwei
    Zhu, Liang
    Feng, Yuan
    APPLIED SCIENCES-BASEL, 2024, 14 (05):