Desalination of produced water via CO2 + C3H8 hydrate formation

被引:5
|
作者
Abulkhair, Hani [1 ,2 ]
Nallakukkala, Sirisha [3 ,4 ]
Moujdin, Iqbal Ahmed [1 ,2 ]
Almatrafi, Eydhah [1 ,2 ]
Bamaga, Omar [1 ,2 ]
Alsaiari, Abdulmohsen [1 ,2 ]
Albeirutty, Mohammed Hussain [1 ,2 ]
Nallakukkala, Jagadish Ram Deepak [5 ]
Lal, Bhajan [3 ,4 ]
Shariff, Azmi Mohd [3 ,4 ]
机构
[1] King Abdulaziz Univ, Ctr Excellence Desalinat Technol, POB 80200, Jeddah 21589, Saudi Arabia
[2] King Abdulaziz Univ, Dept Mech Engn, POB 80200, Jeddah, Saudi Arabia
[3] Univ Teknol PETRONAS, CO2 Res Ctr, Bander Seri Iskander, Perak, Malaysia
[4] Univ Teknol PETRONAS, Chem Engn Dept, Bander Seri Iskander, Perak, Malaysia
[5] Wabag House, Chennai, India
关键词
Hydrate; Desalination; Deionized water; Kinetics; Induction time; Moles; Water recovery; Removal efficiency; Mixed hydrate; Hydrate-based desalination; HYDRATE-BASED DESALINATION; SALT REMOVAL; SEAWATER; KINETICS; BRINE; OIL;
D O I
10.1016/j.seppur.2023.123711
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Recent years have seen increased interest in gas hydrate production as a viable saline water desalination technique. Produced water is the liquid that is extracted from oil and gas fields and is typically salty. The management of produced water is a significant aspect of the petroleum industry because of its potential to serve as a source of fresh water for oil-producing nations with limited access to clean water, growing environmental concerns, and the strict laws governing the discharge of produced water into the environment. In this study, the effect of mixed gas (CO2 + C3H8 (70:30)) hydrate formation in treating produced water and kinetic studies on induction time, moles of gas consumed, rate, water recovery, and water-to-hydrate conversion were experimentally investigated. An aqueous solution with the same ion concentrations was prepared and experiments were performed at 275.15 K/277.15 K, 2.0 MPa, and 450 rpm. The findings unveiled that with an increase in salinity, the water recovery decreased showing the hindering effect of salts on mixed hydrate formation by reducing the solubility of mixed gas due to the strong electrostatic force of attraction between salt ions and water. A maximum of 67.3% water recovery was observed in 2.8 wt% produced water solution at 275.15 K, 2.0 MPa, and 450 rpm. Furthermore, the induction time increased by 52.64% in treating 2.8 wt% and a decrease in moles of gas consumed, water recovery, and water-to-hydrate conversion by 6.99%, 2.08%, and 9.69% compared to the deionized water system at 275.15 K. A removal efficiency of 47%-63% is achieved by using CO2 + C3H8 and the sequence of metal cation removal is in the order K+ > Na+ > Mg2+ > Ca2+ and anions SO42- > Cl- at 275.15 K. The results also showed that with a rise in the experimental temperature to 277.15 K the removal efficiency increased though the amount of hydrate formed is less. This study illustrates that the formation of mixed gas (CO2 + C3H8) hydrate can be used for treating produced water based on the water recovery, removal efficiency, electrical conductivity, and total dissolved solids results with lower energy consumption.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Observation of CO2 hydrate formation in high pressured water
    Nakajima, Y
    Shirota, H
    Namie, S
    PROCEEDINGS OF THE THIRTEENTH (2003) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL 1, 2003, : 317 - 320
  • [32] Synergistic effect of Polyvinylpyrrolidone (PVP) and L-tyrosine on kinetic inhibition of CH4 + C2H4 + C3H8 hydrate formation
    Kakati, Himangshu
    Mandal, Ajay
    Laik, Sukumar
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2016, 34 : 1361 - 1368
  • [33] Experimental study of CO2 hydrate formation under an electrostatic field
    Zhao, Qi
    Chen, Zhao-Yang
    Li, Xiao-Sen
    Xia, Zhi-Ming
    ENERGY, 2023, 272
  • [34] An integrated model for CO2 hydrate formation in sand sediments for sub-seabed CO2 storage
    Yu, Tao
    Sato, Toru
    Nakashima, Takuya
    Inui, Masayuki
    Oyama, Hiroyuki
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2016, 52 : 250 - 269
  • [35] Improving C2H3Cl2F hydrate formation for cold storage in the presence of amino acids
    Li, Rong
    Sun, Zhigao
    JOURNAL OF ENERGY STORAGE, 2023, 59
  • [36] Enhanced CO2 hydrate formation via biopromoter coupled with initial stirring activation
    Zhang, Yongtao
    Chen, Fulin
    He, Yan
    Wang, Fei
    FUEL, 2022, 330
  • [37] Characterization of CO2 hydrate formation and dissociation kinetics in a flow loop
    Jerbi, Salem
    Delahaye, Anthony
    Fournaison, Laurence
    Haberschill, Philippe
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2010, 33 (08): : 1625 - 1631
  • [38] Study on effects of C2H6/C3H8 on explosion limits and chemical kinetics
    Luo Z.
    Su B.
    Wang T.
    Cheng F.
    Huagong Xuebao/CIESC Journal, 2019, 70 (09): : 3601 - 3615
  • [39] Characteristics of CO2 hydrate formation and dissociation at different CO2-water ratios in a porous medium
    Zadeh, Amin Hosseini
    Kim, Ijung
    Kim, Seunghee
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2023, 125
  • [40] Resolving CO2 and methane hydrate formation kinetics
    Golombok, Michael
    Ineke, Erik
    Luzardo, Juan-Carlos Rojas
    He, Yuan Yuan
    Zitha, Pacelli
    ENVIRONMENTAL CHEMISTRY LETTERS, 2009, 7 (04) : 325 - 330