PDMS/PVDF- MoS2 based flexible triboelectric nanogenerator for mechanical energy harvesting

被引:19
|
作者
Singh, Vishal [1 ]
Singh, Bharti [1 ]
机构
[1] Delhi Technol Univ, Dept Appl Phys, Delhi 110042, India
关键词
Flexible; Thin film; Triboelectric; Nanogenerator; Dielectric; HIGHLY EFFICIENT; PHASE-FORMATION; PVDF; NANOCOMPOSITE; PERFORMANCE; FILLERS; DRIVEN; SENSOR; FILMS;
D O I
10.1016/j.polymer.2023.125910
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A green energy generating device that can meet the energy requirements of future technologies without contaminating our environment is increasingly in demand. These devices can harvest energy from ambient sources that are already present in our surroundings. Triboelectric nanogenerator (TENG) has received a lot of attention as a potential sustainable source of power for smart devices, and numerous methods have been explored to enhance its output performance. In this work, we have fabricated a high performance TENG based on MoS2 filled PVDF for harvesting mechanical energy. Effect of MoS2 loading into the PVDF matrix was studied as a function of MoS2 wt% (0, 3, 5, 7, 10%). It has been observed that the fraction of crystalline beta-phase and the dielectric constant of PVDF got enhanced after the addition of MoS2. In addition to the dielectric constant, the surface roughness of the MoS2 filled PVDF sample increases, which further contribute to the enhanced triboelectric performance. The TENG device with 7 wt % of MoS2 in PVDF matrix as one of the layer and PDMS as second layer in the vertical contact-separation geometry generates the maximum triboelectric output voltage and current of 189 V and 1.61 mu A respectively, while the bare PVDF based TENG generates an output voltage and current of 107 V and 0.88 mu A respectively. The TENG with 7 wt % of MoS2 also generates a maximum power density of 104.5 mu Wcm(-2). Further, effect of the tapping frequency and the contact force was also analysed on the PDMS/PVDF-MoS2 based TENG with 7 wt% of MoS2. The triboelectric output voltage and current were also found to be increased with the rise in frequency and the contact force and generated a maximum voltage of similar to 211 V. This study proposes an effective approach for enhancing the performance of triboelectric nanogenerator by changing the filler concentration. The fabricated TENG demonstrated the practical application, by powering electronic stopwatch and scientific calculator.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Emerging direct current triboelectric nanogenerator for high-entropy mechanical energy harvesting
    Chen, Jie
    Guo, Ruilong
    Guo, Hengyu
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2024, 67 (05) : 1297 - 1316
  • [32] Novel Flexible Triboelectric Nanogenerator based on Metallized Porous PDMS and Parylene C
    Mariello, Massimo
    Scarpa, Elisa
    Algieri, Luciana
    Guido, Francesco
    Mastronardi, Vincenzo Mariano
    Qualtieri, Antonio
    De Vittorio, Massimo
    ENERGIES, 2020, 13 (07)
  • [33] Flexible single-electrode triboelectric nanogenerator with MWCNT/PDMS composite film for environmental energy harvesting and human motion monitoring
    Hao Zhang
    Dong-Zhi Zhang
    Dong-Yue Wang
    Zhen-Yuan Xu
    Yan Yang
    Bao Zhang
    Rare Metals, 2022, 41 : 3117 - 3128
  • [34] Advanced 3D printing-based triboelectric nanogenerator for mechanical energy harvesting and self-powered sensing
    Chen, Baodong
    Tang, Wei
    Wang, Zhong Lin
    MATERIALS TODAY, 2021, 50 : 224 - 238
  • [35] Liquid metal flexible wearable triboelectric nanogenerator device for human energy harvesting
    Liang, Shuting
    Li, Fengjiao
    Xie, Shunbi
    Chen, JianYang
    Jiang, Dabo
    Qu, Xi
    Zhang, Haifeng
    JOURNAL OF APPLIED POLYMER SCIENCE, 2024, 141 (13)
  • [36] Nickel-Oxide-Doped Polyvinylidene Fluoride Nanofiber-Based Flexible Triboelectric Nanogenerator for Energy Harvesting and Healthcare Monitoring Applications
    Venkatesan, Hema Malini
    Arun, Anand Prabu
    ACS APPLIED ELECTRONIC MATERIALS, 2024, 6 (02) : 1161 - 1173
  • [37] Hybrid Piezoelectric/Triboelectric Wearable Nanogenerator Based on Stretchable PVDF-PDMS Composite Films
    Chen, Qian
    Cao, Yuying
    Lu, Yan
    Akram, Wasim
    Ren, Song
    Niu, Li
    Sun, Zhe
    Fang, Jian
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (05) : 6239 - 6249
  • [38] Piezoelectric flexible nanogenerator based on ZnO nanosheet networks for mechanical energy harvesting
    Manjula, Y.
    Kumar, R. Rakesh
    Raju, P. Missak Swarup
    Kumar, G. Anil
    Rao, T. Venkatappa
    Akshaykranth, A.
    Supraja, P.
    CHEMICAL PHYSICS, 2020, 533
  • [39] Triboelectric nanogenerator based on a moving bubble in liquid for mechanical energy harvesting and water level monitoring
    Li, Changzheng
    Liu, Xuyang
    Yang, Dafeng
    Liu, Zheng
    NANO ENERGY, 2022, 95
  • [40] Energy harvesting through the triboelectric nanogenerator (TENG) based on polyurethane/cellulose nanocrystal
    Blancas-Flores, Jose Miguel
    Morales-Rivera, Juan
    Rocha-Ortiz, Gilberto
    Ahuactzi, Iran Fernandez Hernandez
    Cabrera-Chavarria, Jose Jesus
    Andrade-Melecio, Hugo Armando
    Astudillo-Sanchez, Pablo Daniel
    Antolin-Ceron, Victor Hugo
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY DEVELOPMENT-IJRED, 2024, 13 (06): : 1162 - 1174