PDMS/PVDF- MoS2 based flexible triboelectric nanogenerator for mechanical energy harvesting

被引:19
|
作者
Singh, Vishal [1 ]
Singh, Bharti [1 ]
机构
[1] Delhi Technol Univ, Dept Appl Phys, Delhi 110042, India
关键词
Flexible; Thin film; Triboelectric; Nanogenerator; Dielectric; HIGHLY EFFICIENT; PHASE-FORMATION; PVDF; NANOCOMPOSITE; PERFORMANCE; FILLERS; DRIVEN; SENSOR; FILMS;
D O I
10.1016/j.polymer.2023.125910
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A green energy generating device that can meet the energy requirements of future technologies without contaminating our environment is increasingly in demand. These devices can harvest energy from ambient sources that are already present in our surroundings. Triboelectric nanogenerator (TENG) has received a lot of attention as a potential sustainable source of power for smart devices, and numerous methods have been explored to enhance its output performance. In this work, we have fabricated a high performance TENG based on MoS2 filled PVDF for harvesting mechanical energy. Effect of MoS2 loading into the PVDF matrix was studied as a function of MoS2 wt% (0, 3, 5, 7, 10%). It has been observed that the fraction of crystalline beta-phase and the dielectric constant of PVDF got enhanced after the addition of MoS2. In addition to the dielectric constant, the surface roughness of the MoS2 filled PVDF sample increases, which further contribute to the enhanced triboelectric performance. The TENG device with 7 wt % of MoS2 in PVDF matrix as one of the layer and PDMS as second layer in the vertical contact-separation geometry generates the maximum triboelectric output voltage and current of 189 V and 1.61 mu A respectively, while the bare PVDF based TENG generates an output voltage and current of 107 V and 0.88 mu A respectively. The TENG with 7 wt % of MoS2 also generates a maximum power density of 104.5 mu Wcm(-2). Further, effect of the tapping frequency and the contact force was also analysed on the PDMS/PVDF-MoS2 based TENG with 7 wt% of MoS2. The triboelectric output voltage and current were also found to be increased with the rise in frequency and the contact force and generated a maximum voltage of similar to 211 V. This study proposes an effective approach for enhancing the performance of triboelectric nanogenerator by changing the filler concentration. The fabricated TENG demonstrated the practical application, by powering electronic stopwatch and scientific calculator.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] A Flexible, Lightweight, and Wearable Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing
    Wu, Fan
    Li, Congju
    Yin, Yingying
    Cao, Ran
    Li, Hui
    Zhang, Xiuling
    Zhao, Shuyu
    Wang, Jiaona
    Wang, Bin
    Xing, Yi
    Du, Xinyu
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (01):
  • [22] A flexible triboelectric-piezoelectric hybrid nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices
    Wang, Xingzhao
    Yang, Bin
    Liu, Jingquan
    Zhu, Yanbo
    Yang, Chunsheng
    He, Qing
    SCIENTIFIC REPORTS, 2016, 6
  • [23] Enhanced dielectric properties of MoS2/ PVDF free-standing, flexible films for energy harvesting applications
    Jangra, Mandeep
    Thakur, Abhishek
    Dam, Siddhartha
    Chatterjee, Souvik
    Hussain, Shamima
    MATERIALS TODAY COMMUNICATIONS, 2023, 34
  • [24] Effective energy harvesting from a single electrode based triboelectric nanogenerator
    Kaur, Navjot
    Bahadur, Jitendra
    Panwar, Vinay
    Singh, Pushpendra
    Rathi, Keerti
    Pal, Kaushik
    SCIENTIFIC REPORTS, 2016, 6
  • [25] Flexible PVDF/BST nanocomposites for mechanical energy harvesting application
    Devi, Laishram Rashi
    Naorem, Bilasini Devi
    Chowdhuri, Arijit
    Sharma, H. Basantakumar
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1004
  • [26] Harvesting mechanical energy, storage, and lighting using a novel PDMS based triboelectric generator with inclined wall arrays and micro-topping structure
    Trinh, V. L.
    Chung, C. K.
    APPLIED ENERGY, 2018, 213 : 353 - 365
  • [27] Nanopillar-array architectured PDMS-based triboelectric nanogenerator integrated with a windmill model for effective wind energy harvesting
    Dudem, Bhaskar
    Nghia Dinh Huynh
    Kim, Wook
    Kim, Dong Hyun
    Hwang, Hee Jae
    Choi, Dukhyun
    Yu, Jae Su
    NANO ENERGY, 2017, 42 : 269 - 281
  • [28] Lightweight Triboelectric Nanogenerator for Energy Harvesting and Sensing Tiny Mechanical Motion
    Li, Tao
    Xu, Ying
    Willander, Magnus
    Xing, Fei
    Cao, Xia
    Wang, Ning
    Wang, Zhong Lin
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (24) : 4370 - 4376
  • [29] Ultra-robust triboelectric nanogenerator for harvesting rotary mechanical energy
    Xinyu Du
    Nianwu Li
    Yuebo Liu
    Jiaona Wang
    Zuqing Yuan
    Yingying Yin
    Ran Cao
    Shuyu Zhao
    Bin Wang
    Zhong Lin Wang
    Congju Li
    Nano Research, 2018, 11 : 2862 - 2871
  • [30] Effect of Ag nanoparticle size on triboelectric nanogenerator for mechanical energy harvesting
    Zhang, Ping
    Li, Peng-Fei
    Zhang, Hong-Hao
    Deng, Lu
    NANOTECHNOLOGY, 2022, 33 (47)