Resolution of Maximum Entropy Method-Derived Posterior Conformational Ensembles of a Flexible System Probed by FRET and Molecular Dynamics Simulations

被引:1
作者
Dittrich, Jonas [1 ]
Popara, Milana [2 ]
Kubiak, Jakub [2 ]
Dimura, Mykola [2 ]
Schepers, Bastian [1 ]
Verma, Neha [1 ]
Schmitz, Birte [1 ]
Dollinger, Peter [3 ]
Kovacic, Filip [3 ]
Jaeger, Karl-Erich [3 ,4 ]
Seidel, Claus A. M. [2 ]
Peulen, Thomas-Otavio [5 ,6 ,7 ]
Gohlke, Holger [1 ,8 ,9 ]
机构
[1] Heinrich Heine Univ Dusseldorf, Inst Pharmaceut & Med Chem, D-40225 Dusseldorf, Germany
[2] Heinrich Heine Univ Duusseldorf, Inst Mol Phys Chem, D-40225 Dusseldorf, Germany
[3] Heinrich Heine Univ Dusseldorf, Inst Mol Enzyme Technol, D-40225 Dusseldorf, Germany
[4] Forschungszentrum Julich GmbH, Inst Bio & Geosci IBG Biotechnol 1, D-52425 Julich, Germany
[5] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94143 USA
[6] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA
[7] Univ Calif San Francisco, Quantitat Biosci Inst QBI, San Francisco, CA 94143 USA
[8] Forschungszentrum Julich GmbH, John Von Neumann Inst Comp NIC, Julich Supercomp Ctr JSC, D-52425 Julich, Germany
[9] Forschungszentrum Julich GmbH, Inst Bio & Geosci IBG Bioinformat 4, D-52425 Julich, Germany
关键词
RESONANCE ENERGY-TRANSFER; CRYO-EM STRUCTURE; X-RAY-SCATTERING; TRANSITION NETWORKS; PROTEIN-STRUCTURE; FORCE-FIELD; COMPLEX; LIPASE; NMR; CONVERGENCE;
D O I
10.1021/acs.jctc.2c01090
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Maximum entropy methods (MEMs) determine posterior distributions by combining experimental data with prior information. MEMs are frequently used to reconstruct conformational ensembles of molecular systems for experimental information and initial molecular ensembles. We performed time-resolved Fo''rster resonance energy transfer (FRET) experiments to probe the interdye distance distributions of the lipase-specific foldase Lif in the apo state, which likely has highly flexible, disordered, and/or ordered structural elements. Distance distributions estimated from ensembles of molecular dynamics (MD) simulations serve as prior information, and FRET experiments, analyzed within a Bayesian framework to recover distance distributions, are used for optimization. We tested priors obtained by MD with different force fields (FFs) tailored to ordered (FF99SB, FF14SB, and FF19SB) and disordered proteins (IDPSFF and FF99SBdisp). We obtained five substantially different posterior ensembles. As in our FRET experiments the noise is characterized by photon counting statistics, for a validated dye model, MEM can quantify consistencies between experiment and prior or posterior ensembles. However, posterior populations of conformations are uncorrelated to structural similarities for individual structures selected from different prior ensembles. Therefore, we assessed MEM simulating varying priors in synthetic experiments with known target ensembles. We found that (i) the prior and experimental information must be carefully balanced for optimal posterior ensembles to minimize perturbations of populations by overfitting and (ii) only ensemble-integrated quantities like inter-residue distance distributions or density maps can be reliably obtained but not ensembles of atomistic structures. This is because MEM optimizes ensembles but not individual structures. This result for a highly flexible system suggests that structurally varying priors calculated from varying prior ensembles, e.g., generated with different FFs, may serve as an ad hoc estimate for MEM reconstruction robustness.
引用
收藏
页码:2389 / 2409
页数:21
相关论文
共 111 条
  • [1] Unraveling multi-state molecular dynamics in single-molecule FRET experiments. I. Theory of FRET-lines
    Barth, Anders
    Opanasyuk, Oleg
    Peulen, Thomas-Otavio
    Felekyan, Suren
    Kalinin, Stanislav
    Sanabria, Hugo
    Seidel, Claus A. M.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (14)
  • [2] Becker Wolfgang., 2021, The bh TCSPC Handbook, V9th
  • [3] Paramagnetism-based NMR restraints provide maximum allowed probabilities for the different conformations of partially independent protein domains
    Bertini, Ivano
    Gupta, Yogesh K.
    Luchinat, Claudio
    Parigi, Giacomo
    Peana, Massimiliano
    Sgheri, Luca
    Yuan, Jing
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (42) : 12786 - 12794
  • [4] Cryo-EM structure of a human spliceosome activated for step 2 of splicing
    Bertram, Karl
    Agafonov, Dmitry E.
    Liu, Wen-Ti
    Dybkov, Olexandr
    Will, Cindy L.
    Hartmuth, Klaus
    Urlaub, Henning
    Kastner, Berthold
    Stark, Holger
    Luehrmann, Reinhard
    [J]. NATURE, 2017, 542 (7641) : 318 - +
  • [5] Principles of protein structural ensemble determination
    Bonomi, Massimiliano
    Heller, Gabriella T.
    Camilloni, Carlo
    Vendruscolo, Michele
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2017, 42 : 106 - 116
  • [6] Combining Experiments and Simulations Using the Maximum Entropy Principle
    Boomsma, Wouter
    Ferkinghoff-Borg, Jesper
    Lindorff-Larsen, Kresten
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (02)
  • [7] Extreme disorder in an ultrahigh-affinity protein complex
    Borgia, Alessandro
    Borgia, Madeleine B.
    Bugge, Katrine
    Kissling, Vera M.
    Heidarsson, Petur O.
    Fernandes, Catarina B.
    Sottini, Andrea
    Soranno, Andrea
    Buholzer, Karin J.
    Nettels, Daniel
    Kragelund, Birthe B.
    Best, Robert B.
    Schuler, Benjamin
    [J]. NATURE, 2018, 555 (7694) : 61 - +
  • [8] Bottaro S, 2020, METHODS MOL BIOL, V2112, P219, DOI 10.1007/978-1-0716-0270-6_15
  • [9] Solution structure of the ESCRT-I complex by small-angle X-ray scattering, EPR, and FRET spectroscopy
    Boura, Evzen
    Rozycki, Bartosz
    Herrick, Dawn Z.
    Chung, Hoi Sung
    Vecer, Jaroslav
    Eaton, William A.
    Cafiso, David S.
    Hummer, Gerhard
    Hurley, James H.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (23) : 9437 - 9442
  • [10] Enhanced Modeling via Network Theory: Adaptive Sampling of Markov State Models
    Bowman, Gregory R.
    Ensign, Daniel L.
    Pande, Vijay S.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (03) : 787 - 794