Itaconate ameliorates autoimmunity by modulating T cell imbalance via metabolic and epigenetic reprogramming

被引:57
|
作者
Aso, Kuniyuki [1 ,2 ]
Kono, Michihito [1 ,2 ]
Kanda, Masatoshi [3 ]
Kudo, Yuki [1 ,2 ]
Sakiyama, Kodai [1 ,2 ]
Hisada, Ryo [1 ,2 ]
Karino, Kohei [1 ,2 ]
Ueda, Yusho [1 ,2 ]
Nakazawa, Daigo [1 ,2 ]
Fujieda, Yuichiro [1 ,2 ]
Kato, Masaru [1 ,2 ]
Amengual, Olga [1 ,2 ]
Atsumi, Tatsuya [1 ,2 ]
机构
[1] Hokkaido Univ, Fac Med, Dept Rheumatol Endocrinol & Nephrol, Sapporo, Japan
[2] Hokkaido Univ, Grad Sch Med, Sapporo, Japan
[3] Sapporo Med Univ, Dept Rheumatol & Clin Immunol, Sapporo, Japan
关键词
DIFFERENTIATION; INHIBITION; CHROMATIN; BALANCE; GLUCOSE; T(H)17; NRF2;
D O I
10.1038/s41467-023-36594-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dysregulation of T cell homeostasis is known to contribute to the immunopathology of autoimmune diseases. Here the authors show that itaconate impacts autoimmune pathology by altering T cells via modulation of metabolic and epigenetic programs. Dysregulation of Th17 and Treg cells contributes to the pathophysiology of many autoimmune diseases. Herein, we show that itaconate, an immunomodulatory metabolite, inhibits Th17 cell differentiation and promotes Treg cell differentiation by orchestrating metabolic and epigenetic reprogramming. Mechanistically, itaconate suppresses glycolysis and oxidative phosphorylation in Th17- and Treg-polarizing T cells. Following treatment with itaconate, the S-adenosyl-L-methionine/S-adenosylhomocysteine ratio and 2-hydroxyglutarate levels are decreased by inhibiting the synthetic enzyme activities in Th17 and Treg cells, respectively. Consequently, these metabolic changes are associated with altered chromatin accessibility of essential transcription factors and key gene expression in Th17 and Treg cell differentiation, including decreased ROR gamma t binding at the Il17a promoter. The adoptive transfer of itaconate-treated Th17-polarizing T cells ameliorates experimental autoimmune encephalomyelitis. These results indicate that itaconate is a crucial metabolic regulator for Th17/Treg cell balance and could be a potential therapeutic agent for autoimmune diseases.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Succinate dehydrogenase/complex II is critical for metabolic and epigenetic regulation of T cell proliferation and inflammation
    Chen, Xuyong
    Sunkel, Benjamin
    Wang, Meng
    Kang, Siwen
    Wang, Tingting
    Gnanaprakasam, J. N. Rashida
    Liu, Lingling
    Cassel, Teresa A.
    Scott, David A.
    Munoz-Cabello, Ana M.
    Lopez-Barneo, Jose
    Yang, Jun
    Lane, Andrew N.
    Xin, Gang
    Stanton, Benjamin Z.
    Fan, Teresa W. -M.
    Wang, Ruoning
    SCIENCE IMMUNOLOGY, 2022, 7 (70)
  • [32] Optimizing Adoptive Cell Therapy for Solid Tumors via Epigenetic Regulation of T-cell Destiny
    Guo, Xuemeng
    Li, Xiang
    Wang, Sijie
    Shi, Yingying
    Huang, Jiaxin
    Liu, Xu
    Lu, Yichao
    Zhang, Junlei
    Luo, Lihua
    You, Jian
    ADVANCED HEALTHCARE MATERIALS, 2024,
  • [33] The Epigenetic Regulator EZH2 Instructs CD4 T Cell Response to Acute Viral Infection via Coupling of Cell Expansion and Metabolic Fitness
    Li, Ren
    Pan, Zhiwei
    Wu, Jialin
    Yue, Shuai
    Lin, Yao
    Yang, Yang
    Li, Zhirong
    Hu, Li
    Tang, Jianfang
    Shan, Lingling
    Tian, Qin
    Jiang, Peng
    Wei, Ping
    Ye, Lilin
    Liu, Pinghuang
    Chen, Xiangyu
    JOURNAL OF VIROLOGY, 2020, 94 (24)
  • [34] Piwil2 is reactivated by HPV oncoproteins and initiates cell reprogramming via epigenetic regulation during cervical cancer tumorigenesis
    Feng, Dingqing
    Yan, Keqin
    Zhou, Ying
    Liang, Haiyan
    Liang, Jing
    Zhao, Weidong
    Dong, Zhongjun
    Ling, Bin
    ONCOTARGET, 2016, 7 (40) : 64575 - 64588
  • [35] Epigenetic Reprogramming via Synergistic Hypomethylation and Hypoxia Enhances the Therapeutic Efficacy of Mesenchymal Stem Cell Extracellular Vesicles for Bone Repair
    Man, Kenny
    Brunet, Mathieu Y.
    Lees, Rebecca
    Peacock, Ben
    Cox, Sophie C.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (08)
  • [36] Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPARγ directs early activation of T cells
    Angela, Mulki
    Endo, Yusuke
    Asou, Hikari K.
    Yamamoto, Takeshi
    Tumes, Damon J.
    Tokuyama, Hirotake
    Yokote, Koutaro
    Nakayama, Toshinori
    NATURE COMMUNICATIONS, 2016, 7
  • [37] The glucose transporter GLUT3 controls T helper 17 cell responses through glycolytic-epigenetic reprogramming
    Hochrein, Sophia M.
    Wu, Hao
    Eckstein, Miriam
    Arrigoni, Laura
    Herman, Josip S.
    Schumacher, Fabian
    Gerecke, Christian
    Rosenfeldt, Mathias
    Gru, Dominic
    Kleuser, Burkhard
    Gasteiger, Georg
    Kastenmu, Wolfgang
    Ghesquiere, Bart
    Van den Bossche, Jan
    Abel, E. Dale
    Vaeth, Martin
    CELL METABOLISM, 2022, 34 (04) : 516 - +
  • [38] Neutral Sphingomyelinase-2 (NSM 2) Controls T Cell Metabolic Homeostasis and Reprogramming During Activation
    De Lira, Maria Nathalia
    Raman, Sudha Janaki
    Schulze, Almut
    Schneider-Schaulies, Sibylle
    Avota, Elita
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2020, 7
  • [39] Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia
    Herranz, Daniel
    Ambesi-Impiombato, Alberto
    Sudderth, Jessica
    Sanchez-Martin, Marta
    Belver, Laura
    Tosello, Valeria
    Xu, Luyao
    Wendorff, Agnieszka A.
    Castillo, Mireia
    Haydu, J. Erika
    Marquez, Javier
    Mates, Jose M.
    Kung, Andrew L.
    Rayport, Stephen
    Cordon-Cardo, Carlos
    DeBerardinis, Ralph J.
    Ferrando, Adolfo A.
    NATURE MEDICINE, 2015, 21 (10) : 1182 - +
  • [40] Asparagine deprivation mediated by Salmonella asparaginase causes suppression of activation-induced T cell metabolic reprogramming
    Torres, AnnMarie
    Luke, Joanna D.
    Kullas, Amy L.
    Kapilashrami, Kanishk
    Botbol, Yair
    Koller, Antonius
    Tonge, Peter J.
    Chen, Emily I.
    Macian, Fernando
    van der Velden, Adrianus W. M.
    JOURNAL OF LEUKOCYTE BIOLOGY, 2016, 99 (02) : 387 - 398