Characterization of State-Preparation Uncertainty in Quantum Key Distribution

被引:8
作者
Huang, Anqi [1 ,2 ]
Mizutani, Akihiro [3 ]
Lo, Hoi-Kwong [4 ,5 ,6 ,7 ]
Makarov, Vadim [8 ,9 ,10 ,11 ]
Tamaki, Kiyoshi [12 ]
机构
[1] Natl Univ Def Technol, Inst Quantum Informat, Coll Comp Sci & Technol, Changsha 410073, Peoples R China
[2] Natl Univ Def Technol, Coll Comp Sci & Technol, State Key Lab High Performance Comp, Changsha 410073, Peoples R China
[3] Osaka Univ, Grad Sch Engn Sci, Osaka 5608531, Japan
[4] Univ Toronto, Ctr Quantum Informat & Quantum Control CQIQC, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
[5] Univ Toronto, Ctr Quantum Informat & Quantum Control CQIQC, Dept Phys, Toronto, ON M5S 3G4, Canada
[6] Univ Hong Kong, Dept Phys, Pokfulam, Hong Kong, Peoples R China
[7] Quantum Bridge Technol Inc, 100 Coll St, Toronto, ON M5G 1L5, Canada
[8] Russian Quantum Ctr, Moscow 121205, Russia
[9] Univ Sci & Technol China, Shanghai Branch, Natl Lab Phys Sci Microscale, Shanghai 201315, Peoples R China
[10] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat, Shanghai 201315, Peoples R China
[11] Natl Univ Sci & Technol MISiS, NTI Ctr Quantum Commun, Moscow 119049, Russia
[12] Univ Toyama, Fac Engn, Gofuku 3190, Toyama 9308555, Japan
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会; 俄罗斯科学基金会; 加拿大创新基金会;
关键词
SECURITY; SYSTEMS;
D O I
10.1103/PhysRevApplied.19.014048
中图分类号
O59 [应用物理学];
学科分类号
摘要
To achieve secure quantum key distribution, all imperfections in the source unit must be incorporated in a security proof and measured in the lab. Here we perform a proof-of-principle demonstration of the exper-imental techniques for characterizing the source phase and intensity fluctuation in commercial quantum key distribution systems. When we apply the measured phase-fluctuation intervals to the security proof that takes into account fluctuations in the state preparation, it predicts a key distribution distance of over 100 km of fiber. The measured intensity fluctuation intervals are, however, so large that the proof predicts zero key, indicating a source improvement may be needed. Our characterization methods pave the way for a future certification standard.
引用
收藏
页数:14
相关论文
共 58 条
[1]  
[Anonymous], SCONTEL SSPD PRODUCT
[2]  
[Anonymous], PARTICULARLY HIGH SP
[3]  
[Anonymous], OUTPUTS MACH ZEHNDER
[4]  
[Anonymous], CLAVIS2 SPECIFICATIO
[5]  
[Anonymous], NOTE BASIC ASSUMPTIO
[6]   Secure Quantum Key Distribution over 421 km of Optical Fiber [J].
Boaron, Alberto ;
Boso, Gianluca ;
Rusca, Davide ;
Vulliez, Cedric ;
Autebert, Claire ;
Caloz, Misael ;
Perrenoud, Matthieu ;
Gras, Gaetan ;
Bussieres, Felix ;
Li, Ming-Jun ;
Nolan, Daniel ;
Martin, Anthony ;
Zbinden, Hugo .
PHYSICAL REVIEW LETTERS, 2018, 121 (19)
[7]   Loss-tolerant quantum key distribution with mixed signal states [J].
Bourassa, J. Eli ;
Primaatmaja, Ignatius William ;
Lim, Charles Ci Wen ;
Lo, Hoi-Kwong .
PHYSICAL REVIEW A, 2020, 102 (06)
[8]  
Curty M., SECURITY DECOYSTATE
[9]   Ability of strong-pulse illumination to hack self-differencing avalanche photodiode detectors in a high-speed quantum-key-distribution system [J].
Gao, Binwu ;
Wu, Zhihao ;
Shi, Weixu ;
Liu, Yingwen ;
Wang, Dongyang ;
Yu, Chunlin ;
Huang, Anqi ;
Wu, Junjie .
PHYSICAL REVIEW A, 2022, 106 (03)
[10]   Quantum cryptography [J].
Gisin, N ;
Ribordy, GG ;
Tittel, W ;
Zbinden, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :145-195