Establishing a data-driven strength model for ??????-tin by performing symbolic regression using genetic programming

被引:6
|
作者
Zapiain, David Montes de Oca [1 ]
Lane, J. Matthew D. [1 ]
Carroll, Jay D. [1 ]
Casias, Zachary [1 ]
Battaile, Corbett C. [1 ]
Fensin, Saryu [2 ]
Lim, Hojun [1 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
Genetic programming; Tin; Strength; Symbolic regression; MODIFIED JOHNSON-COOK; MODIFIED ZERILLI-ARMSTRONG; HOT DEFORMATION-BEHAVIOR; CONSTITUTIVE MODELS; PLASTIC-DEFORMATION; STRAIN RATES; TEMPERATURE; PREDICT;
D O I
10.1016/j.commatsci.2022.111967
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Tin (Sn) exhibits complex deformation behavior characterized by significant dependence of strength on temperature and strain rate. This work develops a strength model for tin by using genetic programming to perform symbolic regression on a set of compression tests at various strain rates and temperatures. The strength model developed in this work showed increased accuracy compared to traditional strength models. Furthermore, the developed strength model adequately predicted independent experimental data (i.e., data that was not used to train the model). Results demonstrate that genetic programming successfully established a valid analytical function that adequately characterizes the temperature and strain rate dependent strength behavior of tin. Therefore, demonstrating that the developed framework provides robust and accurate formulations of strength models.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Data-driven discovery of formulas by symbolic regression
    Sun, Sheng
    Ouyang, Runhai
    Zhang, Bochao
    Zhang, Tong-Yi
    MRS BULLETIN, 2019, 44 (07) : 559 - 564
  • [2] Development of interpretable, data-driven plasticity models with symbolic regression
    Bomarito, G. F.
    Townsend, T. S.
    Stewart, K. M.
    Esham, K., V
    Emery, J. M.
    Hochhalter, J. D.
    COMPUTERS & STRUCTURES, 2021, 252
  • [3] Symbolic Regression for Data-Driven Dynamic Model Refinement in Power Systems
    Saric, Andrija T.
    Saric, Aleksandar A.
    Transtrum, Mark K.
    Stankovic, Aleksandar M.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (03) : 2390 - 2402
  • [4] Data-driven HVAC Control Using Symbolic Regression: Design and Implementation
    Ozawa, Yuki
    Zhao, Dafang
    Watari, Daichi
    Taniguchi, Ittetsu
    Suzuki, Toshihiro
    Shimoda, Yoshiyuki
    Onoye, Takao
    2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM, 2023,
  • [5] Transformation of CPS coordinates using symbolic regression and genetic programming
    Chou, HJ
    Wu, CH
    Su, WH
    Proceedings of the 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, 2005, : 301 - 306
  • [6] Taylor Polynomial Enhancer using Genetic Programming for Symbolic Regression
    Chang, Chi-Hsien
    Chiang, Tu-Chin
    Hsu, Tzu-Hao
    Chuang, Ting-Shuo
    Fang, Wen-Zhong
    Yu, Tian-Li
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 543 - 546
  • [7] Symbolic regression of crop pest forecasting using genetic programming
    Alhadidi, Basim
    Al-Afeef, Alaa
    Al-Hiary, Heba
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2012, 20 : 1332 - 1342
  • [8] Active Learning Informs Symbolic Regression Model Development in Genetic Programming
    Haut, Nathan
    Punch, Bill
    Banzhaf, Wolfgang
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 587 - 590
  • [9] Speeding up Genetic Programming Based Symbolic Regression Using GPUs
    Zhang, Rui
    Lensen, Andrew
    Sun, Yanan
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2022, 13629 : 519 - 533
  • [10] Upgrades of Genetic Programming for Data-Driven Modeling of Time Series
    Murari, A.
    Peluso, E.
    Spolladore, L.
    Rossi, R.
    Gelfusa, M.
    EVOLUTIONARY COMPUTATION, 2023, 31 (04) : 401 - 432