Establishing a data-driven strength model for ??????-tin by performing symbolic regression using genetic programming

被引:10
作者
Zapiain, David Montes de Oca [1 ]
Lane, J. Matthew D. [1 ]
Carroll, Jay D. [1 ]
Casias, Zachary [1 ]
Battaile, Corbett C. [1 ]
Fensin, Saryu [2 ]
Lim, Hojun [1 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
Genetic programming; Tin; Strength; Symbolic regression; MODIFIED JOHNSON-COOK; MODIFIED ZERILLI-ARMSTRONG; HOT DEFORMATION-BEHAVIOR; CONSTITUTIVE MODELS; PLASTIC-DEFORMATION; STRAIN RATES; TEMPERATURE; PREDICT;
D O I
10.1016/j.commatsci.2022.111967
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Tin (Sn) exhibits complex deformation behavior characterized by significant dependence of strength on temperature and strain rate. This work develops a strength model for tin by using genetic programming to perform symbolic regression on a set of compression tests at various strain rates and temperatures. The strength model developed in this work showed increased accuracy compared to traditional strength models. Furthermore, the developed strength model adequately predicted independent experimental data (i.e., data that was not used to train the model). Results demonstrate that genetic programming successfully established a valid analytical function that adequately characterizes the temperature and strain rate dependent strength behavior of tin. Therefore, demonstrating that the developed framework provides robust and accurate formulations of strength models.
引用
收藏
页数:11
相关论文
共 45 条
[1]   Symbolic regression via genetic programming [J].
Augusto, DA ;
Barbosa, HJC .
SIXTH BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, VOL 1, PROCEEDINGS, 2000, :173-178
[2]   A multiscale strength model for extreme loading conditions [J].
Barton, N. R. ;
Bernier, J. V. ;
Becker, R. ;
Arsenlis, A. ;
Cavallo, R. ;
Marian, J. ;
Rhee, M. ;
Park, H. -S. ;
Remington, B. A. ;
Olson, R. T. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (07)
[3]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281
[4]   Development of interpretable, data-driven plasticity models with symbolic regression [J].
Bomarito, G. F. ;
Townsend, T. S. ;
Stewart, K. M. ;
Esham, K., V ;
Emery, J. M. ;
Hochhalter, J. D. .
COMPUTERS & STRUCTURES, 2021, 252
[5]  
Dong Guozhu, 2018, Feature Engineering for Machine Learning and Data Analytics
[6]  
Fang YS, 2010, LECT NOTES COMPUT SC, V6382, P181, DOI 10.1007/978-3-642-16493-4_19
[7]   A CONSTITUTIVE DESCRIPTION OF THE DEFORMATION OF COPPER BASED ON THE USE OF THE MECHANICAL THRESHOLD STRESS AS AN INTERNAL STATE VARIABLE [J].
FOLLANSBEE, PS ;
KOCKS, UF .
ACTA METALLURGICA, 1988, 36 (01) :81-93
[8]   Genetic algorithm in material model parameters' identification for low-cycle fatigue [J].
Franulovic, Marina ;
Basan, Robert ;
Prebil, Ivan .
COMPUTATIONAL MATERIALS SCIENCE, 2009, 45 (02) :505-510
[9]   Interpretable Machine Learning for Texture-Dependent Constitutive Models with Automatic Code Generation for Topological Optimization [J].
Garbrecht, Karl ;
Aguilo, Miguel ;
Sanderson, Allen ;
Rollett, Anthony ;
Kirby, Robert M. ;
Hochhalter, Jacob .
INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2021, 10 (03) :373-392
[10]   Simultaneous optimization of thermal and electrical conductivity of high density polyethylene-carbon particle composites by artificial neural networks and multi-objective genetic algorithm [J].
Garcia-Carrillo, Miguel ;
Espinoza-Martinez, Adriana B. ;
Ramos-de Valle, Luis F. ;
Sanchez-Valdes, Saul .
COMPUTATIONAL MATERIALS SCIENCE, 2022, 201