Explainable machine learning model for liquefaction potential assessment of soils using XGBoost-SHAP
被引:65
|
作者:
Jas, Kaushik
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol Madras, Dept Civil Engn, Chennai 600036, Tamil Nadu, IndiaIndian Inst Technol Madras, Dept Civil Engn, Chennai 600036, Tamil Nadu, India
Jas, Kaushik
[1
]
Dodagoudar, G. R.
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol Madras, Dept Civil Engn, Computat Geomech Lab, Chennai 600036, Tamil Nadu, IndiaIndian Inst Technol Madras, Dept Civil Engn, Chennai 600036, Tamil Nadu, India
Dodagoudar, G. R.
[2
]
机构:
[1] Indian Inst Technol Madras, Dept Civil Engn, Chennai 600036, Tamil Nadu, India
[2] Indian Inst Technol Madras, Dept Civil Engn, Computat Geomech Lab, Chennai 600036, Tamil Nadu, India
Most of the existing machine learning (ML)-based models for liquefaction assessment of soils are black-box in nature. Database considered in the existing studies for model development is imbalanced. In this study, an attempt is made to include the coefficient of permeability and thickness of the critical layer from the available information to the existing database. The eXtreme Gradient Boosting (XGBoost) ML algorithm is used for the model development in a probabilistic framework. The k-means synthetic minority oversampling technique (SMOTE) is introduced to improve the overall accuracy of the model by suitably modelling the imbalanced dataset. An improvement of the model is also performed by tuning the hyperparameters using searching algo-rithms to increase further the accuracy. An explainable machine learning (EML) technique, SHapley Additive exPlanations (SHAP) is employed to provide additional insights into the developed XGBoost model. From the SHAP results, it is found that the equivalent clean sand cone penetration resistance and coefficient of perme-ability are the first and the fourth important input parameters affecting the liquefaction potential. It is concluded that the EML technique is capable of bridging the gap between the conventional domain knowledge of lique-faction and soft computing approaches.
机构:
Indian Inst Technol Madras, Dept Civil Engn, Chennai 600036, Tamil Nadu, IndiaIndian Inst Technol Madras, Dept Civil Engn, Chennai 600036, Tamil Nadu, India
Jas, Kaushik
Mangalathu, Sujith
论文数: 0引用数: 0
h-index: 0
机构:
Puthoor PO, Kollam 691507, Kerala, IndiaIndian Inst Technol Madras, Dept Civil Engn, Chennai 600036, Tamil Nadu, India
Mangalathu, Sujith
Dodagoudar, G. R.
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol Madras, Dept Civil Engn, Computat Geomech Lab, Chennai 600036, Tamil Nadu, IndiaIndian Inst Technol Madras, Dept Civil Engn, Chennai 600036, Tamil Nadu, India
机构:
Indian Inst Technol Madras, Dept Civil Engn, Chennai 600036, Tamil Nadu, IndiaIndian Inst Technol Madras, Dept Civil Engn, Chennai 600036, Tamil Nadu, India
Jas, Kaushik
Dodagoudar, G. R.
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol Madras, Dept Civil Engn, Computat Geomech Lab, Chennai 600036, Tamil Nadu, IndiaIndian Inst Technol Madras, Dept Civil Engn, Chennai 600036, Tamil Nadu, India
机构:
China Univ Min & Technol Beijing, State Key Lab Geomech & Deep Underground Engn, Beijing 100083, Peoples R China
China Univ Min & Technol Beijing, Sch Mech & Civil Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol Beijing, State Key Lab Geomech & Deep Underground Engn, Beijing 100083, Peoples R China
Sui, Qi-ru
Chen, Qin-huang
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol Beijing, Sch Mech & Civil Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol Beijing, State Key Lab Geomech & Deep Underground Engn, Beijing 100083, Peoples R China
Chen, Qin-huang
Wang, Dan-dan
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol Beijing, Sch Mech & Civil Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol Beijing, State Key Lab Geomech & Deep Underground Engn, Beijing 100083, Peoples R China
Wang, Dan-dan
Tao, Zhi-gang
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol Beijing, State Key Lab Geomech & Deep Underground Engn, Beijing 100083, Peoples R China
China Univ Min & Technol Beijing, Sch Mech & Civil Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol Beijing, State Key Lab Geomech & Deep Underground Engn, Beijing 100083, Peoples R China