A model-averaging treatment of multiple instruments in Poisson models with errors

被引:2
|
作者
Zhang, Xiaomeng [1 ,2 ]
Zhang, Xinyu [1 ,3 ]
Ma, Yanyuan [4 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Beijing Acad Artificial Intelligence, Beijing 100084, Peoples R China
[4] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2023年 / 51卷 / 01期
基金
国家重点研发计划; 中国国家自然科学基金; 美国国家科学基金会; 美国国家卫生研究院; 北京市自然科学基金;
关键词
Count response; error in variable; instrumental variable; measurement error; minimum risk; model averaging; Poisson regression; prediction optimality; COVARIATE MEASUREMENT ERROR; MAXIMUM-LIKELIHOOD ANALYSIS; IN-VARIABLES MODELS; SEMIPARAMETRIC ESTIMATORS; LINEAR-REGRESSION; SELECTION;
D O I
10.1002/cjs.11678
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We analyze Poisson regression when covariates contain measurement errors and when multiple potential instrumental variables are available. Without empirical knowledge to select the most suitable variable as an instrument, we propose a novel model-averaging approach to resolve this issue. We prescribe an implementation and establish its optimality in terms of minimizing prediction risk. We further show that, as long as one model is correctly specified among all potential instrumental variable models, our method will lead to consistent prediction. The performance of our method is illustrated through simulations and a movie sales example.
引用
收藏
页码:173 / 198
页数:26
相关论文
共 50 条
  • [41] A marginalized zero-truncated Poisson regression model and its model averaging prediction
    Liu, Yin
    Li, Wenhui
    Zhang, Xinyu
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2023, 13 (3) : 527 - 570
  • [42] Optimal model averaging for partially linear models with missing response variables and error-prone covariates
    Liang, Zhongqi
    Wang, Suojin
    Cai, Li
    STATISTICS IN MEDICINE, 2024, 43 (22) : 4328 - 4348
  • [43] Merging Seasonal Rainfall Forecasts from Multiple Statistical Models through Bayesian Model Averaging
    Wang, Q. J.
    Schepen, Andrew
    Robertson, David E.
    JOURNAL OF CLIMATE, 2012, 25 (16) : 5524 - 5537
  • [44] Weighted least squares model averaging for accelerated failure time models
    Dong, Qingkai
    Liu, Binxia
    Zhao, Hui
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 184
  • [45] Model averaging prediction for time series models with a diverging number of parameters
    Liao, Jun
    Zou, Guohua
    Gao, Yan
    Zhang, Xinyu
    JOURNAL OF ECONOMETRICS, 2021, 223 (01) : 190 - 221
  • [46] Accounting for uncertainty in health economic decision models by using model averaging
    Jackson, Christopher H.
    Thompson, Simon G.
    Sharples, Linda D.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2009, 172 : 383 - 404
  • [47] Model averaging for estimating treatment effects
    Zhao, Zhihao
    Zhang, Xinyu
    Zou, Guohua
    Wan, Alan T. K.
    Tso, Geoffrey K. F.
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2024, 76 (01) : 73 - 92
  • [48] Model selection and model averaging for matrix exponential spatial models
    Yang, Ye
    Dogan, Osman
    Taspinar, Suleyman
    ECONOMETRIC REVIEWS, 2022, 41 (08) : 827 - 858
  • [49] Incorporating Digital Footprints into Credit-Scoring Models through Model Averaging
    Wang, Linhui
    Zhu, Jianping
    Zheng, Chenlu
    Zhang, Zhiyuan
    MATHEMATICS, 2024, 12 (18)
  • [50] Model averaging estimation for nonparametric varying-coefficient models with multiplicative heteroscedasticity
    Sun, Xianwen
    Zhang, Lixin
    STATISTICAL PAPERS, 2024, 65 (03) : 1375 - 1409