A model-averaging treatment of multiple instruments in Poisson models with errors

被引:2
|
作者
Zhang, Xiaomeng [1 ,2 ]
Zhang, Xinyu [1 ,3 ]
Ma, Yanyuan [4 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Beijing Acad Artificial Intelligence, Beijing 100084, Peoples R China
[4] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2023年 / 51卷 / 01期
基金
国家重点研发计划; 中国国家自然科学基金; 美国国家科学基金会; 美国国家卫生研究院; 北京市自然科学基金;
关键词
Count response; error in variable; instrumental variable; measurement error; minimum risk; model averaging; Poisson regression; prediction optimality; COVARIATE MEASUREMENT ERROR; MAXIMUM-LIKELIHOOD ANALYSIS; IN-VARIABLES MODELS; SEMIPARAMETRIC ESTIMATORS; LINEAR-REGRESSION; SELECTION;
D O I
10.1002/cjs.11678
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We analyze Poisson regression when covariates contain measurement errors and when multiple potential instrumental variables are available. Without empirical knowledge to select the most suitable variable as an instrument, we propose a novel model-averaging approach to resolve this issue. We prescribe an implementation and establish its optimality in terms of minimizing prediction risk. We further show that, as long as one model is correctly specified among all potential instrumental variable models, our method will lead to consistent prediction. The performance of our method is illustrated through simulations and a movie sales example.
引用
收藏
页码:173 / 198
页数:26
相关论文
共 50 条
  • [31] Model averaging for linear mixed models via augmented Lagrangian
    Kruse, Rene-Marcel
    Silbersdorff, Alexander
    Safken, Benjamin
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 167
  • [32] Comparison of model-averaging and single-distribution approaches to estimating species sensitivity distributions and hazardous concentrations for 5% of species
    Iwasaki, Yuichi
    Yanagihara, Miina
    ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 2025, 44 (03) : 834 - 840
  • [33] Model averaging for generalized linear models in fragmentary data prediction
    Yuan, Chaoxia
    Wu, Yang
    Fang, Fang
    STATISTICAL THEORY AND RELATED FIELDS, 2022, 6 (04) : 344 - 352
  • [34] Jackknife model averaging for linear regression models with missing responses
    Zeng, Jie
    Cheng, Weihu
    Hu, Guozhi
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2024, 53 (03) : 583 - 616
  • [35] Model averaging estimation of generalized linear models with imputed covariates
    Dardanoni, Valentino
    De Luca, Giuseppe
    Modica, Salvatore
    Peracchi, Franco
    JOURNAL OF ECONOMETRICS, 2015, 184 (02) : 452 - 463
  • [36] Model averaging for multiple quantile regression with covariates missing at random
    Ding, Xianwen
    Xie, Jinhan
    Yan, Xiaodong
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (11) : 2249 - 2275
  • [37] Model averaging for generalized linear models with missing at random covariates
    Cheng, Weili
    Li, Xiaorui
    Li, Xiaoxia
    Yan, Xiaodong
    STATISTICS, 2023, 57 (01) : 26 - 52
  • [38] Weighted Score Tests Implementing Model-Averaging Schemes in Detection of Rare Variants in Case-Control Studies
    Coombes, Brandon
    Basu, Saonli
    Guha, Sharmistha
    Schork, Nicholas
    PLOS ONE, 2015, 10 (10):
  • [39] Model Averaging for Estimating Treatment Effects With Binary Responses
    Cui, Guangyuan
    Li, Na
    Wan, Alan T. K.
    Zhang, Xinyu
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2024,
  • [40] Model selection and model averaging after multiple imputation
    Schomaker, Michael
    Heumann, Christian
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 : 758 - 770