A model-averaging treatment of multiple instruments in Poisson models with errors

被引:2
|
作者
Zhang, Xiaomeng [1 ,2 ]
Zhang, Xinyu [1 ,3 ]
Ma, Yanyuan [4 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Beijing Acad Artificial Intelligence, Beijing 100084, Peoples R China
[4] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2023年 / 51卷 / 01期
基金
国家重点研发计划; 中国国家自然科学基金; 美国国家科学基金会; 美国国家卫生研究院; 北京市自然科学基金;
关键词
Count response; error in variable; instrumental variable; measurement error; minimum risk; model averaging; Poisson regression; prediction optimality; COVARIATE MEASUREMENT ERROR; MAXIMUM-LIKELIHOOD ANALYSIS; IN-VARIABLES MODELS; SEMIPARAMETRIC ESTIMATORS; LINEAR-REGRESSION; SELECTION;
D O I
10.1002/cjs.11678
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We analyze Poisson regression when covariates contain measurement errors and when multiple potential instrumental variables are available. Without empirical knowledge to select the most suitable variable as an instrument, we propose a novel model-averaging approach to resolve this issue. We prescribe an implementation and establish its optimality in terms of minimizing prediction risk. We further show that, as long as one model is correctly specified among all potential instrumental variable models, our method will lead to consistent prediction. The performance of our method is illustrated through simulations and a movie sales example.
引用
收藏
页码:173 / 198
页数:26
相关论文
共 50 条
  • [1] A Model-Averaging Approach to Replication: The Case of prep
    Iverson, Geoffrey J.
    Wagenmakers, Eric-Jan
    Lee, Michael D.
    PSYCHOLOGICAL METHODS, 2010, 15 (02) : 172 - 181
  • [2] Model averaging for multivariate multiple regression models
    Zhu, Rong
    Zou, Guohua
    Zhang, Xinyu
    STATISTICS, 2018, 52 (01) : 205 - 227
  • [3] Optimal model averaging for semiparametric partially linear models with measurement errors
    Hu, Guozhi
    Cheng, Weihu
    Zeng, Jie
    Guan, Ruijie
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2024, 230
  • [4] Persistent shocks and incomplete regional adjustment: a model-averaging approach
    Greenaway-McGrevy, Ryan
    Hood, Kyle K.
    REGIONAL STUDIES, 2022, 56 (03) : 371 - 380
  • [5] Frequentist model averaging for zero-inflated Poisson regression models
    Zhou, Jianhong
    Wan, Alan T. K.
    Yu, Dalei
    STATISTICAL ANALYSIS AND DATA MINING, 2022, 15 (06) : 679 - 691
  • [6] Estimation of QT interval prolongation through model-averaging
    Bonate, Peter L.
    JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2017, 44 (04) : 335 - 349
  • [7] Firm Default Prediction: A Bayesian Model-Averaging Approach
    Traczynski, Jeffrey
    JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS, 2017, 52 (03) : 1211 - 1245
  • [8] Optimal model averaging for divergent-dimensional Poisson regressions
    Zou, Jiahui
    Wang, Wendun
    Zhang, Xinyu
    Zou, Guohua
    ECONOMETRIC REVIEWS, 2022, 41 (07) : 775 - 805
  • [9] The drivers of local income inequality: a spatial Bayesian model-averaging approach
    Hortas-Rico, Miriam
    Rios, Vicente
    REGIONAL STUDIES, 2019, 53 (08) : 1207 - 1220
  • [10] Toward optimal model averaging in regression models with time series errors
    Cheng, Tzu-Chang F.
    Ing, Ching-Kang
    Yu, Shu-Hui
    JOURNAL OF ECONOMETRICS, 2015, 189 (02) : 321 - 334