共 50 条
A model-averaging treatment of multiple instruments in Poisson models with errors
被引:2
|作者:
Zhang, Xiaomeng
[1
,2
]
Zhang, Xinyu
[1
,3
]
Ma, Yanyuan
[4
]
机构:
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Beijing Acad Artificial Intelligence, Beijing 100084, Peoples R China
[4] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
来源:
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE
|
2023年
/
51卷
/
01期
基金:
国家重点研发计划;
中国国家自然科学基金;
美国国家科学基金会;
美国国家卫生研究院;
北京市自然科学基金;
关键词:
Count response;
error in variable;
instrumental variable;
measurement error;
minimum risk;
model averaging;
Poisson regression;
prediction optimality;
COVARIATE MEASUREMENT ERROR;
MAXIMUM-LIKELIHOOD ANALYSIS;
IN-VARIABLES MODELS;
SEMIPARAMETRIC ESTIMATORS;
LINEAR-REGRESSION;
SELECTION;
D O I:
10.1002/cjs.11678
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We analyze Poisson regression when covariates contain measurement errors and when multiple potential instrumental variables are available. Without empirical knowledge to select the most suitable variable as an instrument, we propose a novel model-averaging approach to resolve this issue. We prescribe an implementation and establish its optimality in terms of minimizing prediction risk. We further show that, as long as one model is correctly specified among all potential instrumental variable models, our method will lead to consistent prediction. The performance of our method is illustrated through simulations and a movie sales example.
引用
收藏
页码:173 / 198
页数:26
相关论文