Geospatial analysis of shoreline changes in the Oman coastal region (2000-2022) using GIS and remote sensing techniques

被引:3
作者
Colak, Arife Tugsan Isiacik [1 ]
机构
[1] Natl Univ Sci & Technol, Int Maritime Coll Oman, Sohar, Oman
关键词
coastline; GIS; remote sensing; change analysis; EPR; LLR; WATER INDEX NDWI; SEA-LEVEL RISE; EXTRACTION; QUALITY; WETLAND; IMPACT;
D O I
10.3389/fmars.2024.1305283
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This research introduces an innovative method employing the Canny edge detector for automatic and precise coastline extraction, aiming to analyze spatial and temporal variations in the Oman coastline from 2000 to 2022 using GIS and remote sensing (RS) techniques. Focusing on both multi-decadal and short-term periods, the study aims to detect accretion and erosion rates through the observation and interpretation of coastal changes. Utilizing the Digital Shoreline Analysis System and LANDSAT imageries, Shoreline changes have been quantitatively evaluated using three distinct approaches: Linear Regression Rate (LRR), End Point Rate (EPR), and Net Shoreline Movement (NSM). The dynamic nature of the Oman coastal region necessitates a comprehensive understanding of its evolving coastline. Our investigation applies digital shoreline analysis to discern shifts in the coastline's position, employing a multiple regression approach for quantifying the rate of coastal change. To facilitate automatic shoreline extraction, various methods were experimented with, ultimately determining the Canny Edge algorithm's superiority in yielding precise results. The paper outlines the monitoring procedures for the coastal area and analyzes coastline changes using geospatial techniques. This analysis provides valuable insights for the planning and management of the Oman shore. Furthermore, the proposed model's applicability is rigorously tested against other generic edge detection algorithms, including Sobel, Prewitt, and Robert's techniques. The conclusive findings demonstrate that our model outperforms these alternatives, particularly excelling in the accurate detection of the coastline. This research contributes to a deeper understanding of coastal dynamics and offers a robust methodology for coastal monitoring, with implications for effective planning and management strategies in the Oman shore region.
引用
收藏
页数:13
相关论文
共 59 条
  • [1] Abdul Maulud K. N., 2022, Assessment of shoreline
  • [2] Shoreline Erosion Assessment Modelling for Sohar Region: Measurements, Analysis, and Scenario
    Abushandi, E.
    Abualkishik, A.
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [3] Adebola A. O., 2017, Geospatial Analysis of Coastal Land Use/Land cover Pattern and Shoreline Changes in Akwa-Ibom State, Nigeria
  • [4] Al-Hatrushi S., 2015, Am. J. Climate Change, V4, P379, DOI 10.4236/ajcc.2015.44030
  • [5] Alesheikh A. A., 2004, Map Asia 2004
  • [6] A review and meta-analysis of remote sensing data, GIS methods, materials and indices used for monitoring the coastline evolution over the last twenty years
    Apostolopoulos, Dionysios
    Nikolakopoulos, Konstantinos
    [J]. EUROPEAN JOURNAL OF REMOTE SENSING, 2021, 54 (01) : 240 - 265
  • [7] Estimating Quantitative Morphometric Parameters and Spatiotemporal Evolution of the Prokopos Lagoon Using Remote Sensing Techniques
    Apostolopoulos, Dionysios N.
    Avramidis, Pavlos
    Nikolakopoulos, Konstantinos G.
    [J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (07)
  • [8] Analysis of shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: an application of digital shoreline analysis system (DSAS)
    Baig, Mirza Razi Imam
    Ahmad, Ishita Afreen
    Shahfahad
    Tayyab, Mohammad
    Rahman, Atiqur
    [J]. ANNALS OF GIS, 2020, 26 (04) : 361 - 376
  • [9] Shoreline definition and detection: A review
    Boak, EH
    Turner, IL
    [J]. JOURNAL OF COASTAL RESEARCH, 2005, 21 (04) : 688 - 703