BézierCE: Low-Light Image Enhancement via Zero-Reference Bézier Curve Estimation

被引:0
|
作者
Gao, Xianjie [1 ]
Zhao, Kai [2 ]
Han, Lei [3 ]
Luo, Jinming [4 ]
机构
[1] Shanxi Agr Univ, Dept Basic Sci, Taigu 030801, Peoples R China
[2] Univ New South Wales, Fac Engn, Sydney, NSW 2052, Australia
[3] Harbin Univ Sci & Technol, Sch Sci, Harbin 150080, Peoples R China
[4] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
low-light image enhancement; zero reference; Bezier curve; ADAPTIVE HISTOGRAM EQUALIZATION; VARIATIONAL FRAMEWORK; NETWORK; RETINEX;
D O I
10.3390/s23239593
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Due to problems such as the shooting light, viewing angle, and camera equipment, low-light images with low contrast, color distortion, high noise, and unclear details can be seen regularly in real scenes. These low-light images will not only affect our observation but will also greatly affect the performance of computer vision processing algorithms. Low-light image enhancement technology can help to improve the quality of images and make them more applicable to fields such as computer vision, machine learning, and artificial intelligence. In this paper, we propose a novel method to enhance images through Bezier curve estimation. We estimate the pixel-level Bezier curve by training a deep neural network (BCE-Net) to adjust the dynamic range of a given image. Based on the good properties of the Bezier curve, in that it is smooth, continuous, and differentiable everywhere, low-light image enhancement through Bezier curve mapping is effective. The advantages of BCE-Net's brevity and zero-reference make it generalizable to other low-light conditions. Extensive experiments show that our method outperforms existing methods both qualitatively and quantitatively.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement
    Guo, Chunle
    Li, Chongyi
    Guo, Jichang
    Loy, Chen Change
    Hou, Junhui
    Kwong, Sam
    Cong, Runmin
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 1777 - 1786
  • [2] Understanding and improving zero-reference deep curve estimation for low-light image enhancement
    Wu, Jiahao
    Zhan, Dandan
    Jin, Zhi
    APPLIED INTELLIGENCE, 2024, 54 (9-10) : 6846 - 6864
  • [3] Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation
    Li, Chongyi
    Guo, Chunle
    Loy, Chen Change
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (08) : 4225 - 4238
  • [4] A Zero-Reference Low-Light Image-Enhancement Approach Based on Noise Estimation
    Cao, Pingping
    Niu, Qiang
    Zhu, Yanping
    Li, Tao
    APPLIED SCIENCES-BASEL, 2024, 14 (07):
  • [5] Residual Quotient Learning for Zero-Reference Low-Light Image Enhancement
    Xie, Chao
    Fei, Linfeng
    Tao, Huanjie
    Hu, Yaocong
    Zhou, Wei
    Hoe, Jiun Tian
    Hu, Weipeng
    Tan, Yap-Peng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2025, 34 : 365 - 378
  • [6] A Zero-Reference Low-Light Image Enhancement Method from Local to Global
    Yang W.
    Wang S.
    Wu J.
    Chen W.
    Tian Z.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2024, 58 (04): : 158 - 169
  • [7] Fast, Zero-Reference Low-Light Image Enhancement with Camera Response Model
    Wang, Xiaofeng
    Huang, Liang
    Li, Mingxuan
    Han, Chengshan
    Liu, Xin
    Nie, Ting
    SENSORS, 2024, 24 (15)
  • [8] Zero-LEINR: Zero-Reference Low-light Image Enhancement with Intrinsic Noise Reduction
    Tang, Wing Ho
    Yuan, Hsuan
    Chiang, Tzu-Hao
    Huang, Ching-Chun
    2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 2023,
  • [9] Combining implicit and explicit priors for zero-reference low-light image enhancement and denoising
    Yu, Jinxia
    Xue, Fabao
    Huo, Zhanqiang
    Qiao, Yingxu
    MULTIMEDIA SYSTEMS, 2025, 31 (02)
  • [10] A hybrid zero-reference and dehazing network for joint low-light underground image enhancement
    Qing Du
    Shihao Zhang
    Zhipeng Wang
    Jincheng Liang
    Shijiao Yang
    Scientific Reports, 15 (1)