COMBINING SELF-SUPERVISED AND SUPERVISED LEARNING WITH NOISY LABELS

被引:0
|
作者
Zhang, Yongqi [1 ]
Zhang, Hui [1 ]
Yao, Quanming [2 ]
Wan, Jun [3 ]
机构
[1] 4Paradigm Inc, Beijing, Peoples R China
[2] Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China
[3] Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
来源
2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP | 2023年
关键词
Convolutional neural network; noisy label learning; self-supervised learning; robustness;
D O I
10.1109/ICIP49359.2023.10221957
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Since convolutional neural networks (CNNs) can easily overfit noisy labels, which are ubiquitous in visual classification tasks, it has been a great challenge to train CNNs against them robustly. Various methods have been proposed for this challenge. However, none of them pay attention to the difference between representation and classifier learning of CNNs. Thus, inspired by the observation that classifier is more robust to noisy labels while representation is much more fragile, and by the recent advances of self-supervised representation learning (SSRL) technologies, we design a new method, i.e., (CSNL)-N-3, to obtain representation by SSRL without labels and train the classifier directly with noisy labels. Extensive experiments are performed on both synthetic and real benchmark datasets. Results demonstrate that the proposed method can beat the state-of-the-art ones by a large margin, especially under a high noisy level.
引用
收藏
页码:605 / 609
页数:5
相关论文
共 50 条
  • [31] Synergistic Self-supervised and Quantization Learning
    Cao, Yun-Hao
    Sun, Peiqin
    Huang, Yechang
    Wu, Jianxin
    Zhou, Shuchang
    COMPUTER VISION - ECCV 2022, PT XXX, 2022, 13690 : 587 - 604
  • [32] Self-Supervised learning for Conversational Recommendation
    Li, Shuokai
    Xie, Ruobing
    Zhu, Yongchun
    Zhuang, Fuzhen
    Tang, Zhenwei
    Zhao, Wayne Xin
    He, Qing
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (06)
  • [33] Self-supervised learning with ensemble representations
    Han, Kyoungmin
    Lee, Minsik
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 143
  • [34] Relational Self-Supervised Learning on Graphs
    Lee, Namkyeong
    Hyun, Dongmin
    Lee, Junseok
    Park, Chanyoung
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1054 - 1063
  • [35] Self-supervised Graph Learning for Recommendation
    Wu, Jiancan
    Wang, Xiang
    Feng, Fuli
    He, Xiangnan
    Chen, Liang
    Lian, Jianxun
    Xie, Xing
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 726 - 735
  • [36] Self-Supervised Learning for Multimedia Recommendation
    Tao, Zhulin
    Liu, Xiaohao
    Xia, Yewei
    Wang, Xiang
    Yang, Lifang
    Huang, Xianglin
    Chua, Tat-Seng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5107 - 5116
  • [37] Self-Supervised Learning in Remote Sensing
    Wang, Yi
    Albrecht, Conrad M.
    Ait Ali Braham, Nassim
    Mou, Lichao
    Zhu, Xiao Xiang
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2022, 10 (04) : 213 - 247
  • [38] Biased Self-supervised learning for ASR
    Kreyssig, Florian L.
    Shi, Yangyang
    Guo, Jinxi
    Sari, Leda
    Mohamed, Abdelrahman
    Woodland, Philip C.
    INTERSPEECH 2023, 2023, : 4948 - 4952
  • [39] Self-Supervised Learning for Videos: A Survey
    Schiappa, Madeline C.
    Rawat, Yogesh S.
    Shah, Mubarak
    ACM COMPUTING SURVEYS, 2023, 55 (13S)
  • [40] Self-Supervised Learning for User Localization
    Dash, Ankan
    Gu, Jingyi
    Wang, Guiling
    Ansari, Nirwan
    2024 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS, ICNC, 2024, : 886 - 890