COMBINING SELF-SUPERVISED AND SUPERVISED LEARNING WITH NOISY LABELS

被引:0
|
作者
Zhang, Yongqi [1 ]
Zhang, Hui [1 ]
Yao, Quanming [2 ]
Wan, Jun [3 ]
机构
[1] 4Paradigm Inc, Beijing, Peoples R China
[2] Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China
[3] Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
来源
2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP | 2023年
关键词
Convolutional neural network; noisy label learning; self-supervised learning; robustness;
D O I
10.1109/ICIP49359.2023.10221957
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Since convolutional neural networks (CNNs) can easily overfit noisy labels, which are ubiquitous in visual classification tasks, it has been a great challenge to train CNNs against them robustly. Various methods have been proposed for this challenge. However, none of them pay attention to the difference between representation and classifier learning of CNNs. Thus, inspired by the observation that classifier is more robust to noisy labels while representation is much more fragile, and by the recent advances of self-supervised representation learning (SSRL) technologies, we design a new method, i.e., (CSNL)-N-3, to obtain representation by SSRL without labels and train the classifier directly with noisy labels. Extensive experiments are performed on both synthetic and real benchmark datasets. Results demonstrate that the proposed method can beat the state-of-the-art ones by a large margin, especially under a high noisy level.
引用
收藏
页码:605 / 609
页数:5
相关论文
共 50 条
  • [21] JGCL: Joint Self-Supervised and Supervised Graph Contrastive Learning
    Akkas, Selahattin
    Azad, Ariful
    COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2022, WWW 2022 COMPANION, 2022, : 1099 - 1105
  • [22] Noisy-as-Clean: Learning Self-Supervised Denoising From Corrupted Image
    Xu, Jun
    Huang, Yuan
    Cheng, Ming-Ming
    Liu, Li
    Zhu, Fan
    Xu, Zhou
    Shao, Ling
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 9316 - 9329
  • [23] Self-Supervised Adversarial Variational Learning
    Ye, Fei
    Bors, Adrian. G.
    PATTERN RECOGNITION, 2024, 148
  • [24] Self-Supervised Learning of Robot Manipulation
    Tommy, Robin
    Krishnan, Athira R.
    2020 4TH INTERNATIONAL CONFERENCE ON AUTOMATION, CONTROL AND ROBOTS (ICACR 2020), 2020, : 22 - 25
  • [25] Self-supervised learning for outlier detection
    Diers, Jan
    Pigorsch, Christian
    STAT, 2021, 10 (01):
  • [26] Self-Supervised Learning for Recommender System
    Huang, Chao
    Wang, Xiang
    He, Xiangnan
    Yin, Dawei
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 3440 - 3443
  • [27] Graph Self-Supervised Learning: A Survey
    Liu, Yixin
    Jin, Ming
    Pan, Shirui
    Zhou, Chuan
    Zheng, Yu
    Xia, Feng
    Yu, Philip S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (06) : 5879 - 5900
  • [28] Self-Supervised Adversarial Imitation Learning
    Monteiro, Juarez
    Gavenski, Nathan
    Meneguzzi, Felipe
    Barros, Rodrigo C.
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [29] Self-Supervised Learning: Generative or Contrastive
    Liu, Xiao
    Zhang, Fanjin
    Hou, Zhenyu
    Mian, Li
    Wang, Zhaoyu
    Zhang, Jing
    Tang, Jie
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 857 - 876
  • [30] Self-supervised Learning for CT Deconvolution
    Sudhakar, Prasad
    Langoju, Rajesh
    Agrawal, Utkarsh
    Patil, Bhushan D.
    Narayanan, Ajay
    Chaugule, Vinay
    Amilneni, Vinod
    Cheerankal, Paul
    Das, Bipul
    MEDICAL IMAGING 2021: PHYSICS OF MEDICAL IMAGING, 2021, 11595