Lattice regulation strategy for constructing high-rate performance Na0.44Mn0.895Ti0.1Mg0.005O2 sodium-ion batteries cathode materials

被引:2
|
作者
Hua, Zhonge [1 ]
Jian, Yuxuan [1 ]
Jijie, Wang [1 ]
Lin, Yuhua [1 ]
Zhou, Wenqing [1 ]
Jiang, Hongyuqi [1 ]
Shen, Yongqiang [1 ]
Wu, Xianwen [1 ]
Xiang, Yanhong [1 ]
机构
[1] Jishou Univ, Coll Chem & Chem Engn, Jishou 416000, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodiumion batteries; Cathode materials; Na0.44MnO2; Co-doping; NA0.44MNO2;
D O I
10.1016/j.jssc.2023.124415
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Na0.44MnO2 has received much interest as a potential cathode material for Sodium-ion batteries (SIBs) because of its unique tunnel structure and the ease of Na+ insertion/extraction. Therefore, the size and stability of the tunnel structure are critical factors in solving its low-rate performance and cycle stability. Herein, a lattice regulation strategy to enlarge the size in favor of Na+ insertion/extraction and to maintain the stability of the tunnel structure of Na0.44MnO2 by Ti and trace Mg co-doping is reported for the first time. Subsequently, the Na0.44Mn0.895Ti0.1Mg0.005O2 (NMO-TM) material is synthesized with Ti/Mg co-doping. The structure and phase composition of the as-synthesized samples are investigated through X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The results indicate that Ti/Mg has been effectively doped into the crystal structure of Na0.44MnO2 while it maintains the stability of the tunnel structure. The material was used as cathode materials of rechargeable sodium-ion batteries. As a result, at a 1 C rate, the NMO-TM sample exhibits a considerable capacity of 110 mAh g-1, with retention rates of up to 93.6 % after 200 cycles. Even at a higher cycle rate of 20 C, the NMO-TM sample maintains a specific capacity of 80.0 mAh g-1, with a retention rate of 67 % after 2000 cycles. This work provides a facile strategy for regulating the tunnel structure to get stable and high-rate performance of cathode materials.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Solid-State Synthesis and Characterization of Mg-Substituted P2-Na0.70Ni0.45Mn0.55O2 Cathode Materials for Practical Sodium-Ion Batteries
    Majumder, Sourav
    Narasimman, Rajaram
    Dhuruvan, Sanjeevi
    Varatharajan, Prabhu
    Murugan, Arjun Raj
    Sarojiniamma, Sujatha
    Appusamy, Ilangovan Sinthai
    ADVANCED SUSTAINABLE SYSTEMS, 2023, 7 (05)
  • [32] A novel P2/O3 biphase Na0.67Fe0.425Mn0.425Mg0.15O2 as cathode for high-performance sodium-ion batteries
    Zhou, Dengmei
    Huang, Wanxia
    Lv, Xiang
    Zhao, Fenglin
    JOURNAL OF POWER SOURCES, 2019, 421 : 147 - 155
  • [33] Effect of Ti doping on the structural and electrochemical performance of O3-type Na(Ni0.3Fe0.2Mn0.5)1-xTixO2 cathode materials for sodium-ion batteries
    Xu, Shuangwu
    Chen, Hongxia
    Li, Cheng
    Nie, Rihuang
    Yang, Yutian
    Zhou, Mengcheng
    Zhang, Xinyu
    Zhou, Hongming
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 962
  • [34] Significant role of magnesium substitution in improved performance of layered O3-Na-Mn-Ni-Mg-O cathode material for developing sodium-ion batteries
    Mathiyalagan, Kouthaman
    Karuppiah, Kannan
    Ponnaiah, Arjunan
    Rengapillai, Subadevi
    Marimuthu, Sivakumar
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (08) : 10656 - 10667
  • [35] Copper-substituted P3-type Na0.54Mn0.64Fe0.16Mg0.1Cu0.1O2 cathode material for sodium-ion batteries with enhanced anionic redox reversibility
    Mei, Zhe
    Li, Xun-Lu
    Ma, Cui
    Zeng, Jie
    Du, Chong-Yu
    Luo, Rui-Jie
    Xu, Xuan
    Qian, Zhe
    Zhou, Zi-Ting
    Zhang, Ya
    Cheng, Qian
    Fang, Yao-Guo
    Zhou, Yong-Ning
    RARE METALS, 2025, : 2986 - 2996
  • [36] Layered P2-type Na0.5Ni0.25Mn0.75O2 as a high performance cathode material for sodium-ion batteries
    Manikandan, P.
    Ramasubramonian, D.
    Shaijumon, M. M.
    ELECTROCHIMICA ACTA, 2016, 206 : 199 - 206
  • [37] Exploring the Charge Compensation Mechanism of P2-Type Na0.6Mg0.3Mn0.7O2 Cathode Materials for Advanced Sodium-Ion Batteries
    Cheng, Chen
    Ding, Manling
    Yan, Tianran
    Dai, Kehua
    Mao, Jing
    Zhang, Nian
    Zhang, Liang
    Guo, Jinghua
    ENERGIES, 2020, 13 (21)
  • [38] P2-type Na0.67Mn0.72Ni0.14Co0.14O2 with K+ doping as new high rate performance cathode material for sodium-ion batteries
    Wang, Kai
    Wu, Zhen-Guo
    Zhang, Tao
    Deng, Ya-Ping
    Li, Jun-Tao
    Guo, Xiao-Dong
    Xu, Bin-Bin
    Zhong, Ben-He
    ELECTROCHIMICA ACTA, 2016, 216 : 51 - 57
  • [39] A comprehensive modification enables the high rate capability of P2-Na0.75Mn0.67Ni0.33O2 for sodium-ion cathode materials
    Feng, Xiaochen
    Li, Yong
    Shi, Qinhao
    Wang, Xuan
    Yin, Xiuping
    Wang, Jing
    Xia, Zhonghong
    Xiao, Haiyan
    Chen, Aibing
    Yang, Xinxin
    Zhao, Yufeng
    JOURNAL OF ENERGY CHEMISTRY, 2022, 69 : 442 - 449
  • [40] Improved Sodium Storage Performance of Zn-Substituted P3-Na0.67Ni0.33Mn0.67O2 Cathode Materials for Sodium-Ion Batteries
    Yan Liu
    Jihui Liao
    Zhaohong Tang
    Yang Chao
    Wen Chen
    Xuehang Wu
    Wenwei Wu
    Journal of Electronic Materials, 2023, 52 : 864 - 876