Multi-Objective NSGA-II Optimization for Broadband Beamforming with Spherical Harmonic Domain Assistance

被引:0
作者
Liu, Zhenghong [1 ,2 ]
Zhou, Haocheng [1 ,2 ]
Song, Xiyu [1 ,2 ]
Wang, Mei [3 ]
Weng, Liuqing [1 ,2 ]
机构
[1] Guilin Univ Elect Technol, Sch Informat & Commun, Guilin 541004, Peoples R China
[2] Minist Educ, Key Lab Cognit Radio & Informat Proc, Guilin 541004, Peoples R China
[3] Guilin Univ Technol, Sch Informat Sci & Engn, Guilin 541006, Peoples R China
关键词
array processing; multi-objective optimization; sidelobe suppression; pareto-optimal; white noise gain; MICROPHONE ARRAY; PHASE-MODE; DESIGN; DECOMPOSITION;
D O I
10.3390/s23208403
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Sidelobe suppression is a major challenge in wideband beamforming for acoustic research, especially in high noise and reverberation environments. In this paper, we propose a multi-objective NSGA-II wideband beamforming method based on a spherical harmonic domain for spherical microphone arrays topology. The method takes white noise gain, directional index and maximum sidelobe level as the optimization objectives of broadband beamforming, adopts the NSGA-II optimization strategy with constraints to estimate the Pareto optimal solution, and provides three-dimensional broadband beamforming capability. Our method provides superior sidelobe suppression across different spherical harmonic orders compared to commonly used multi-constrained single-objective optimal beamforming methods. We also validate the effectiveness of our proposed method in a conference room setting. The proposed method achieves a white noise gain of 8.28 dB and a maximum sidelobe level of -23.42 dB at low frequency, while at high frequency it yields comparable directivity index results to both DolphChebyshev and SOCP methods, but outperforms them in terms of white noise gain and maximum sidelobe level, measuring 16.14 dB and -25.18 dB, respectively.
引用
收藏
页数:17
相关论文
共 32 条
[21]  
Rafaely B., 2015, Fundamentals of Spherical Array Processing, V8, DOI [10.1007/978-3-662-45664-4, DOI 10.1007/978-3-662-45664-4]
[22]   Spatial sampling and beamforming for spherical microphone arrays [J].
Rafaely, Boaz .
2008 HANDS-FREE SPEECH COMMUNICATION AND MICROPHONE ARRAYS, 2008, :5-8
[23]   Spherical microphone array with multiple nulls for analysis of directional room impulse responses [J].
Rafaely, Boaz .
2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, :281-284
[24]   Design of Non-Uniform Circular Antenna Arrays Using a Modified Invasive Weed Optimization Algorithm [J].
Roy, Gourab Ghosh ;
Das, Swagatam ;
Chakraborty, Prithwish ;
Suganthan, Ponnuthurai N. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2011, 59 (01) :110-118
[25]  
Srinivas N., 1994, Evolutionary Computation, V2, P221, DOI 10.1162/evco.1994.2.3.221
[26]  
Sun HH, 2010, INT ITG WORKS SMART, P286, DOI 10.1109/WSA.2010.5456430
[27]  
Teutsch H, 2007, LECT NOTES CONTR INF, V348, P1
[28]  
Williams E., 2000, J ACOUST SOC AM, V108, P1373, DOI DOI 10.1121/1.1289662
[29]  
Williams EarlG., 1999, Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography, P1, DOI 10.1016/B978-0-12-753960-7.X5000-1
[30]   Constraint Handling in Multiobjective Evolutionary Optimization [J].
Woldesenbet, Yonas Gebre ;
Yen, Gary G. ;
Tessema, Biruk G. .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2009, 13 (03) :514-525