Multi-Objective NSGA-II Optimization for Broadband Beamforming with Spherical Harmonic Domain Assistance

被引:0
作者
Liu, Zhenghong [1 ,2 ]
Zhou, Haocheng [1 ,2 ]
Song, Xiyu [1 ,2 ]
Wang, Mei [3 ]
Weng, Liuqing [1 ,2 ]
机构
[1] Guilin Univ Elect Technol, Sch Informat & Commun, Guilin 541004, Peoples R China
[2] Minist Educ, Key Lab Cognit Radio & Informat Proc, Guilin 541004, Peoples R China
[3] Guilin Univ Technol, Sch Informat Sci & Engn, Guilin 541006, Peoples R China
关键词
array processing; multi-objective optimization; sidelobe suppression; pareto-optimal; white noise gain; MICROPHONE ARRAY; PHASE-MODE; DESIGN; DECOMPOSITION;
D O I
10.3390/s23208403
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Sidelobe suppression is a major challenge in wideband beamforming for acoustic research, especially in high noise and reverberation environments. In this paper, we propose a multi-objective NSGA-II wideband beamforming method based on a spherical harmonic domain for spherical microphone arrays topology. The method takes white noise gain, directional index and maximum sidelobe level as the optimization objectives of broadband beamforming, adopts the NSGA-II optimization strategy with constraints to estimate the Pareto optimal solution, and provides three-dimensional broadband beamforming capability. Our method provides superior sidelobe suppression across different spherical harmonic orders compared to commonly used multi-constrained single-objective optimal beamforming methods. We also validate the effectiveness of our proposed method in a conference room setting. The proposed method achieves a white noise gain of 8.28 dB and a maximum sidelobe level of -23.42 dB at low frequency, while at high frequency it yields comparable directivity index results to both DolphChebyshev and SOCP methods, but outperforms them in terms of white noise gain and maximum sidelobe level, measuring 16.14 dB and -25.18 dB, respectively.
引用
收藏
页数:17
相关论文
共 32 条
[1]   Circular Collaborative Beamforming for Improved Radiation Beampattern in WSN [J].
Abd Malik, N. N. Nik ;
Esa, M. ;
Yusof, S. K. Syed ;
Hamzah, S. A. ;
Ismail, M. K. H. .
INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2013, :1-9
[2]   Acoustic Dual-Function Communication and Echo-Location in Inaudible Band [J].
Allegro, Gabriele ;
Fascista, Alessio ;
Coluccia, Angelo .
SENSORS, 2022, 22 (03)
[3]  
Arfken G., 1967, Phys. Today, V20, P79, DOI [10.1063/1.3034326, DOI 10.1063/1.3034326]
[4]   An Empirical Study on Transmission Beamforming for Ultrasonic Guided-Wave Based Structural Health Monitoring [J].
Cantero-Chinchilla, Sergio ;
Aranguren, Gerardo ;
Khalid Malik, Muhammad ;
Etxaniz, Josu ;
Martin de la Escalera, Federico .
SENSORS, 2020, 20 (05)
[5]  
Chen How Wong, 2012, 2012 4th International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN 2012), P84, DOI 10.1109/CICSyN.2012.26
[6]  
Coello CAC, 2004, IEEE T EVOLUT COMPUT, V8, P256, DOI [10.1109/TEVC.2004.826067, 10.1109/tevc.2004.826067]
[7]   Phase mode processing for spherical antenna arrays [J].
De Witte, E ;
Griffiths, HD ;
Brennan, PV .
ELECTRONICS LETTERS, 2003, 39 (20) :1430-1431
[8]  
Deb K, 1999, ARTIFICIAL NEURAL NETS AND GENETIC ALGORITHMS, P235
[9]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[10]   Collaborative localization method using analytical and iterative solutions for microseismic/acoustic emission sources in the rockmass structure for underground mining [J].
Dong, Longjun ;
Zou, Wei ;
Li, Xibing ;
Shu, Weiwei ;
Wang, Zewei .
ENGINEERING FRACTURE MECHANICS, 2019, 210 :95-112