METTL3-mediated m6A modification of HMGA2 mRNA promotes subretinal fibrosis and epithelial-mesenchymal transition

被引:16
|
作者
Wang, Yuwei [1 ,2 ]
Chen, Yuhong [1 ,2 ]
Liang, Jian [2 ]
Jiang, Mei [1 ,2 ]
Zhang, Ting [1 ,2 ]
Wan, Xiaoling [1 ,2 ]
Wu, Jiahui [1 ,2 ]
Li, Xiaomeng [1 ,2 ]
Chen, Jieqiong [1 ,2 ]
Sun, Junran [1 ,2 ]
Hu, Yifan [1 ,2 ]
Huang, Peirong [1 ,2 ]
Feng, Jingyang [1 ,2 ]
Liu, Te [3 ]
Sun, Xiaodong [1 ,2 ,4 ,5 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Gen Hosp, Sch Med, Dept Ophthalmol, Shanghai 200080, Peoples R China
[2] Shanghai Key Lab Ocular Fundus Dis, Shanghai 200080, Peoples R China
[3] Shanghai Univ Tradit Chinese Med, Shanghai Geriatr Inst Chinese Med, Shanghai 200031, Peoples R China
[4] Natl Clin Res Ctr Eye Dis, Shanghai 200080, Peoples R China
[5] Shanghai Engn Ctr Visual Sci & Photomed, Shanghai 200080, Peoples R China
关键词
METTL3; N (6)-methyladenosine; epithelial-mesenchymal transition; subretinal fibrosis; HMGA2; MOBILITY GROUP A2; MACULAR DEGENERATION; GROWTH-FACTOR; EXPRESSION; CELLS; RPE; PREVALENCE; TRIALS; SNAIL; EYES;
D O I
10.1093/jmcb/mjad005
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Subretinal fibrosis is a major cause of the poor visual prognosis for patients with neovascular age-related macular degeneration (nAMD). Myofibroblasts originated from retinal pigment epithelial (RPE) cells through epithelial-mesenchymal transition (EMT) contribute to the fibrosis formation. N-6-Methyladenosine (m(6)A) modification has been implicated in the EMT process and multiple fibrotic diseases. The role of m(6)A modification in EMT-related subretinal fibrosis has not yet been elucidated. In this study, we found that during subretinal fibrosis in the mouse model of laser-induced choroidal neovascularization, METTL3 was upregulated in RPE cells. Through m(6)A epitranscriptomic microarray and further verification, high-mobility group AT-hook 2 (HMGA2) was identified as the key downstream target of METTL3, subsequently activating potent EMT-inducing transcription factor SNAIL. Finally, by subretinal injections of adeno-associated virus vectors, we confirmed that METTL3 deficiency in RPE cells could efficiently attenuate subretinal fibrosis in vivo. In conclusion, our present research identified an epigenetic mechanism of METTL3-m(6)A-HMGA2 in subretinal fibrosis and EMT of RPE cells, providing a novel therapeutic target for subretinal fibrosis secondary to nAMD.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] METTL3-mediated m6A modification of CDCA7 mRNA promotes COAD progression
    Hua, Mei
    Zhai, Xiaolu
    Chen, Ying
    Yin, Dian
    PATHOLOGY RESEARCH AND PRACTICE, 2024, 260
  • [2] METTL3-mediated m6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance
    Wang, Qiang
    Chen, Chen
    Ding, Qingqing
    Zhao, Yan
    Wang, Zhangding
    Chen, Junjie
    Jiang, Zerun
    Zhang, Yan
    Xu, Guifang
    Zhang, Jingjing
    Zhou, Jianwei
    Sun, Beicheng
    Zou, Xiaoping
    Wang, Shouyu
    GUT, 2020, 69 (07) : 1193 - 1205
  • [3] METTL3-mediated m6A modification of TIMP2 mRNA promotes podocyte injury in diabetic nephropathy
    Jiang, Ling
    Liu, Xueqi
    Hu, Xueru
    Gao, Li
    Zeng, Hanxu
    Wang, Xian
    Huang, Yuebo
    Zhu, Wei
    Wang, Jianan
    Wen, Jiagen
    Meng, Xiaoming
    Wu, Yonggui
    MOLECULAR THERAPY, 2022, 30 (04) : 1721 - 1740
  • [4] Mettl3-mediated mRNA m6A methylation promotes dendritic cell activation
    Wang, Huamin
    Hu, Xiang
    Huang, Mingyan
    Liu, Juan
    Gu, Yan
    Ma, Lijia
    Zhou, Qi
    Cao, Xuetao
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [5] METTL3-mediated m6A mRNA modification promotes esophageal cancer initiation and progression via Notch signaling pathway
    Han, Hui
    Yang, Chunlong
    Zhang, Shuishen
    Cheng, Maosheng
    Guo, Siyao
    Zhu, Yan
    Ma, Jieyi
    Liang, Yu
    Wang, Lu
    Zheng, Siyi
    Wang, Zhaoyu
    Chen, Demeng
    Jiang, Yi-Zhou
    Lin, Shuibin
    MOLECULAR THERAPY-NUCLEIC ACIDS, 2021, 26 : 333 - 346
  • [6] Long noncoding RNA AI662270 promotes kidney fibrosis through enhancing METTL3-mediated m6A modification of CTGF mRNA
    Sun, Yanyan
    Ge, Jia
    Shao, Fang
    Ren, Zhengrong
    Huang, Zhen
    Ding, Zhi
    Dong, Lei
    Chen, Jiangning
    Zhang, Junfeng
    Zang, Yuhui
    FASEB JOURNAL, 2023, 37 (08):
  • [7] Galectin-1 promotes choroidal neovascularization and subretinal fibrosis mediated via epithelial-mesenchymal transition
    Wu, Di
    Kanda, Atsuhiro
    Liu, Ye
    Kase, Satoru
    Noda, Kousuke
    Ishida, Susumu
    FASEB JOURNAL, 2019, 33 (02): : 2498 - 2513
  • [8] HMGA2 promotes cancer metastasis by regulating epithelial-mesenchymal transition
    Ma, Qing
    Ye, Sisi
    Liu, Hong
    Zhao, Yu
    Mao, Yan
    Zhang, Wei
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [9] METTL3-mediated m6A mRNA modification of FBXW7 suppresses lung adenocarcinoma
    Wu, Yingtong
    Chang, Ning
    Zhang, Yong
    Zhang, Xinxin
    Xu, Leidi
    Che, Yinggang
    Qiao, Tianyun
    Wu, Bin
    Zhou, Ying
    Jiang, Jun
    Xiong, Jie
    Zhang, Jian
    Zhang, Jian
    JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH, 2021, 40 (01)
  • [10] METTL3-mediated m6A modification of Bcl-2 mRNA promotes non-small cell lung cancer progression
    Zhang, Yongxi
    Liu, Shuyuan
    Zhao, Tiesuo
    Dang, Chengxue
    ONCOLOGY REPORTS, 2021, 46 (02)