Gearbox Fault Diagnosis Using REMD, EO and Machine Learning Classifiers

被引:5
作者
Afia, Adel [1 ,2 ]
Gougam, Fawzi [2 ]
Rahmoune, Chemseddine [2 ]
Touzout, Walid [2 ]
Ouelmokhtar, Hand [2 ]
Benazzouz, Djamel [2 ]
机构
[1] Houari Boumediene Univ Sci & Technol, Dept Mech & Proc Engn, Babzouar, Alger, Algeria
[2] Univ Mhamed Bougara Boumerdes, Dept Mech Engn, Solid Mech & Syst Lab LMSS, Boumerdes, Algeria
关键词
Fault diagnosis; Gearbox; Feature extraction; Feature selection; Feature classification; Vibration signals; FEATURE-EXTRACTION; EQUILIBRIUM OPTIMIZER; ALGORITHM; CLASSIFICATION; ENSEMBLE; NETWORK; DESIGN; SYSTEM; COLONY; EMD;
D O I
10.1007/s42417-023-01144-8
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Gearboxes are critical equipment in many industrial applications such as machine manufacturing, petrochemical industry, renewable energy, etc. However, due to their complex structure and regularly harsh working environment, gearboxes are inevitably prone to a variety of faults and defects during operation. Therefore, intelligent condition monitoring techniques are crucially important for early gear and bearing fault recognition and detection to avoid any industrial failure due to machine breakdowns. In this paper, an intelligent algorithm for gear and bearing fault diagnosis is suggested based on several approaches mainly: robust empirical mode decomposition (REMD), time domain features are used for the feature extraction step, while equilibrium optimizer (EO) in the feature selection. For feature classification, random forest (RF), ensemble tree (ET) and nearest neighbors (KNN) are chosen as classifiers. REMD is used to alleviate the mode mixing problem by monitoring the sifting process and selecting the optimal iteration number. EO is a recent optimization approach based on the laws of physical theory in nature. EO reduces the high-dimensional data problem, by filtering redundant features, and increasing model generalization efficiency by avoiding the over-fitting curse. The proposed approach is applied to real-time vibration signals from a healthy gearbox and four different faulty gear and bearing conditions. According to our approach, data signals are decomposed by REMD to several intrinsic mode functions (IMFs). Thereafter, time-domain features are computed for each IMF to construct the feature matrix for every gear and bearing health status. After that, EO is applied to every matrix in the feature selection step. Finally, RF, ET and KNN are used to calculate classification accuracy and give the confusion matrix. Compared to several feature selection techniques, experimental results prove the efficiency of the proposed approach in detecting, identifying, and classifying all gear and bearing defects even under different operating modes.
引用
收藏
页码:4673 / 4697
页数:25
相关论文
共 50 条
  • [41] Multi-Fault Rapid Diagnosis for Wind Turbine Gearbox Using Sparse Bayesian Extreme Learning Machine
    Zhong, Jian-Hua
    Zhang, Jun
    Liang, Jiejunyi
    Wang, Haiqing
    IEEE ACCESS, 2019, 7 : 773 - 781
  • [42] Intelligent Fault Diagnosis for Chemical Processes Using Deep Learning Multimodel Fusion
    Wang, Nan
    Yang, Fan
    Zhang, Ridong
    Gao, Furong
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (07) : 7121 - 7135
  • [43] A statistical comparison of neuroclassifiers and feature selection methods for gearbox fault diagnosis under realistic conditions
    Pacheco, Fannia
    Valente de Oliveira, Jose
    Sanchez, Rene-Vinicio
    Cerrada, Mariela
    Cabrera, Diego
    Li, Chuan
    Zurita, Grover
    Artes, Mariano
    NEUROCOMPUTING, 2016, 194 : 192 - 206
  • [44] Multiple Fault Diagnosis in a Wind Turbine Gearbox with Autoencoder Data Augmentation and KPCA Dimension Reduction
    Felix, Leonardo Oldani
    Martins, Dionisio Henrique Carvalho de Sa So
    Monteiro, Ulisses Admar Barbosa Vicente
    Pinto, Luiz Antonio Vaz
    Tarrataca, Luis
    Martins, Carlos Alfredo Orfao
    JOURNAL OF NONDESTRUCTIVE EVALUATION, 2024, 43 (04)
  • [45] A Machine-Learning-Based Distributed System for Fault Diagnosis With Scalable Detection Quality in Industrial IoT
    Marino, Rodrigo
    Wisultschew, Cristian
    Otero, Andres
    Lanza-Gutierrez, Jose M.
    Portilla, Jorge
    de la Torre, Eduardo
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (06) : 4339 - 4352
  • [46] A meta transfer learning fault diagnosis method for gearbox with few-shot data
    Yang, Zhichao
    Duan, Yudan
    She, Daoming
    Pecht, Michael G.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (02)
  • [47] A Hybrid Feature Selection and Multi-Label Driven Intelligent Fault Diagnosis Method for Gearbox
    Liu, Di
    Zhang, Xiangfeng
    Zhang, Zhiyu
    Jiang, Hong
    SENSORS, 2023, 23 (10)
  • [48] A Feature Selection Approach for Fall Detection Using Various Machine Learning Classifiers
    Tuan Minh Le
    Ly Van Tran
    Son Vu Truong Dao
    IEEE ACCESS, 2021, 9 : 115895 - 115908
  • [49] Application Research of a Novel Enhanced SSD Method in Composite Fault Diagnosis of Wind Power Gearbox
    Wang, Zhijian
    He, Huihui
    Wang, Junyuan
    Du, Wenhua
    IEEE ACCESS, 2019, 7 : 154986 - 155001
  • [50] An Analysis of Machine Learning Classifiers in Breast Cancer Diagnosis
    Teixeira, Fabiano
    Zeni Montenegro, Joao Luis
    da Costa, Cristiano Andre
    Righi, Rodrigo da Rosa
    2019 XLV LATIN AMERICAN COMPUTING CONFERENCE (CLEI 2019), 2019,