Feasibility of improving dust removal efficiency of fly ash fine particles for coal-fired power plants

被引:1
|
作者
Li, Haisheng [1 ,3 ]
Yao, Jie [2 ]
Xu, Ziyin [2 ]
Zhou, Hui [1 ]
Chen, Yinghua [1 ,3 ]
Feng, Weigang [2 ]
机构
[1] China Univ Min & Technol, Key Lab Coal Proc & Efficient Utilizat, Minist Educ, Xuzhou, Peoples R China
[2] China Univ Min & Technol, Sch Chem Engn & Technol, Xuzhou, Peoples R China
[3] China Univ Min & Technol, Key Lab Coal Proc & Efficient Utilizat, Minist Educ, Xuzhou 221116, Peoples R China
基金
中国国家自然科学基金;
关键词
electrocoagulation; electrocoagulation efficiency; fine particles; fly ash; particle concentration; ELECTRIC-FIELD;
D O I
10.1002/clen.202200293
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As solid waste of coal-fired power plants, atmospheric environmental pollution is caused by fly ash during transportation. The purpose of this study was to improve the dust removal efficiency of fly ash fine particles by electrocoagulation and obtain reasonable operating parameters. The effects of particle concentration, gas velocity, AC frequency, and voltage on particle electrocoagulation efficiency were studied through the establishment of a discrete element soft sphere calculation model, and reasonable electrocoagulation operation parameters were obtained. The dust removal process was evaluated according to the particle number concentration, electrocoagulation efficiency, and particles microscopic characteristics due to the dust removal experiments of fly ash by electrocoagulation. The results demonstrated that increasing particle concentration, reducing gas velocity, and selecting reasonable AC frequency and voltage were effective to improve the real-time electrocoagulation efficiency and its stability. Under the suitable conditions: voltage of 3 kV, airflow velocity of 5 m s-1, particle concentration of 30 mg m-3 and AC frequency of 100 Hz, the electrocoagulation efficiency was higher than 40%. The electrocoagulation was effective to improve the dust removal efficiency of fly ash fine particles with a relative humidity of air below 70% and ambient temperatures above 20 & DEG;C. Electrocoagulation provides a new method to solve industrial dust pollution caused by fly ash. This research delves into the behavior of charged particle coagulation and its corresponding variations in coagulation efficiency under diverse operational conditions. The findings were fundamental for the design of dust removal and environmental pollution control equipment. It has good application prospects in industrial production.image
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Increasing mercury risk of fly ash generated from coal-fired power plants in China
    Chen, Qing
    Chen, Long
    Li, Jiashuo
    Guo, Yaqin
    Wang, Yongjie
    Wei, Wendong
    Liu, Chang
    Wu, Jiayuan
    Tou, Feiyun
    Wang, Xuejun
    Yang, Yi
    JOURNAL OF HAZARDOUS MATERIALS, 2022, 429
  • [12] LEACHING BEHAVIOR AND BIOAVAILABILITY OF ARSENIC AND SELENIUM IN FLY ASH FROM COAL-FIRED POWER PLANTS
    Yuan, Chun-Gang
    Yin, Lian-Qing
    Liu, Song-Tao
    He, Bin
    FRESENIUS ENVIRONMENTAL BULLETIN, 2010, 19 (02): : 221 - 225
  • [13] Insight of particulate arsenic removal from coal-fired power plants
    Gong, Hongyu
    Huang, Yongda
    Hu, Hongyun
    Fu, Biao
    Ma, Tongtong
    Li, Shuai
    Xie, Kang
    Luo, Guangqian
    Yao, Hong
    FUEL, 2019, 257
  • [14] A review on fly ash from coal-fired power plants: chemical composition, regulations, and health evidence
    Zierold, Kristina M.
    Odoh, Chisom
    REVIEWS ON ENVIRONMENTAL HEALTH, 2020, 35 (04) : 401 - 418
  • [15] Experimental investigation on removal of coal-fired fine particles by a condensation scrubber
    Fan, Fengxian
    Yang, Linjun
    Yan, Jinpei
    Bao, Jingjing
    Shen, Xianglin
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2009, 48 (08) : 1353 - 1360
  • [16] Chemical speciation and leaching characteristics of hazardous trace elements in coal and fly ash from coal-fired power plants
    Zhao, Shilin
    Duan, Yufeng
    Lu, Jincheng
    Gupta, Rajender
    Pudasainee, Deepak
    Liu, Shuai
    Liu, Meng
    Lu, Jianhong
    FUEL, 2018, 232 : 463 - 469
  • [17] Heavy metals in fly ash from a coal-fired power station in Poland
    Smolka-Danielowska, D.
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2006, 15 (06): : 943 - 946
  • [18] THE STUDY OF FLY ASH SCHEDULING OPTIMIZATION MODEL IN COAL-FIRED POWER PLANT
    Fu, Ming
    Wang, Lu
    Xu, Yong-Lan
    Niu, Dong-Xiao
    Ma, Tian-Nan
    ENERGY AND MECHANICAL ENGINEERING, 2016, : 292 - 298
  • [19] SEQUENTIAL EXTRACTION OF PALLADIUM IN FLY ASH FROM COAL-FIRED POWER PLANT
    Yuan, Chun-Gang
    Liu, Song-Tao
    Yin, Lian-Qing
    FRESENIUS ENVIRONMENTAL BULLETIN, 2010, 19 (05): : 871 - 875
  • [20] Acid Stabilization of Fly Ash from Coal Fired Power Plants
    Xiang, Wei
    Li, Ying
    PROCEEDINGS OF THE 2015 INTERNATIONAL FORUM ON ENERGY, ENVIRONMENT SCIENCE AND MATERIALS, 2015, 40 : 615 - 618