Updated Lagrangian particle hydrodynamics (ULPH) modeling for free-surface fluid flows

被引:3
|
作者
Yan, Jiale [1 ,2 ,3 ]
Li, Shaofan [4 ]
Kan, Xingyu [5 ]
Lv, Pengyu [1 ,2 ]
Zhang, A-Man [3 ]
Duan, Huiling [1 ,2 ]
机构
[1] Peking Univ, Coll Engn, Dept Mech & Engn Sci, State Key Lab Turbulence & Complex Syst,BIC ESAT, Beijing 100871, Peoples R China
[2] Laoshan Lab, Joint Lab Marine Hydrodynam & Ocean Engn, Qingdao 266237, Peoples R China
[3] Harbin Engn Univ, Coll Shipbuilding Engn, Harbin 150001, Peoples R China
[4] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA
[5] Chinese Acad Sci, Key Lab Mech Fluid Solid Coupling Syst, Inst Mech, Beijing 100190, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Computational fluid dynamics; Density diffusive term; Free-surface flows; Free-surface detection; Peridynamics; Updated Lagrangian particle hydrodynamics (ULPH); MATERIAL POINT METHOD; IMPROVED SPH METHOD; LEVEL-SET METHOD; NUMERICAL-SIMULATION; ALGORITHM;
D O I
10.1007/s00466-023-02368-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we develop an accurate and stable Updated Lagrangian particle hydrodynamics (ULPH) modeling to simulate complicated free-surface fluid flows. Leveraging its inherent properties as a Lagrangian particle method, the ULPH has natural advantages in modeling free-surface flows. However, similar to other meshfreemethods, ULPH is subject to numerical instabilities and non-physical pressure fluctuations when solving the Navier-Stokes equation in the explicit numerical scheme. Within the framework of the ULPH method, several innovative enhanced treatment techniques have been proposed and combined with other previouly developed methods to establish an ULPH single-phase flow model. The main novelties of these techniques are the derivation of the density diffusive term in the continuum equation inspired by delta-SPH to eliminate pressure oscillations, and the proposal of a new free-surface search algorithm to determine the particles and their normal vectors at the free surface. The ULPH is a nonlocal fluid dynamics model, which is in fact a prototype of Peridynamics in fluid mechanics. Considering the nature of free-surface fluid flows, we strategically implement the diagonalization and renormalization of the shape tensor for particles located in close proximity to the free-surface region to improve the numerical stability of computations. Several complex free-surface flow benchmark examples have been simulated, which confirms that the enhanced treatment techniques can effectively capture the details of surface flow evolution and maintain long-term stability. Moreover, the qualitative and quantitative analyses of the results indicate that the proposed ULPH surface flow model is highly accurate and stable for simulating complex free-surface fluid flows.
引用
收藏
页码:297 / 316
页数:20
相关论文
共 50 条
  • [21] FLUID-STRUCTURE INTERACTION SIMULATION WITH FREE SURFACE FLOWS BY SMOOTHED PARTICLE HYDRODYNAMICS
    Farahani, M. H.
    Amanifard, N.
    Asadi, H.
    Mahnama, M.
    IMECE 2008: MECHANICS OF SOLIDS, STRUCTURES AND FLUIDS, VOL 12, 2009, : 99 - 107
  • [22] Simulation of viscoelastic free-surface flows with the Particle Finite Element Method
    Rizzieri, Giacomo
    Ferrara, Liberato
    Cremonesi, Massimiliano
    COMPUTATIONAL PARTICLE MECHANICS, 2024, 11 (05) : 2043 - 2067
  • [23] A fully Lagrangian formulation for fluid-structure interaction problems with free-surface flows and fracturing solids
    Cornejo, Alejandro
    Franci, Alessandro
    Zarate, Francisco
    Onate, Eugenio
    COMPUTERS & STRUCTURES, 2021, 250
  • [24] A conservative and consistent Lagrangian gradient smoothing method for simulating free surface flows in hydrodynamics
    Mao, Zirui
    Liu, G. R.
    Dong, Xiangwei
    Lin, Tao
    COMPUTATIONAL PARTICLE MECHANICS, 2019, 6 (04) : 781 - 801
  • [25] Modeling and simulation of ice–water interactions by coupling peridynamics with updated Lagrangian particle hydrodynamics
    Renwei Liu
    Jiale Yan
    Shaofan Li
    Computational Particle Mechanics, 2020, 7 : 241 - 255
  • [26] Modeling anisotropy in free-surface overland and shallow inundation flows
    Viero, Daniele Pietro
    Valipour, Mohammad
    ADVANCES IN WATER RESOURCES, 2017, 104 : 1 - 14
  • [27] Theoretical considerations on the free-surface role in the smoothed-particle-hydrodynamics model
    Colagrossi, Andrea
    Antuono, Matteo
    Le Touze, David
    PHYSICAL REVIEW E, 2009, 79 (05):
  • [28] Surface tension simulation of free surface flows using smoothed particle hydrodynamics
    Ordoubadi, M.
    Yaghoubi, M.
    Yeganehdoust, F.
    SCIENTIA IRANICA, 2017, 24 (04) : 2019 - 2033
  • [29] Particle Virtual Element Method (PVEM): an agglomeration technique for mesh optimization in explicit Lagrangian free-surface fluid modelling
    Fu, Cheng
    Cremonesi, Massimiliano
    Perego, Umberto
    Hudobivnik, Blaz
    Wriggers, Peter
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 433
  • [30] On the modeling of viscous incompressible flows with smoothed particle hydrodynamics
    Liu, Mou-Bin
    Li, Shang-ming
    JOURNAL OF HYDRODYNAMICS, 2016, 28 (05) : 731 - 745