Lithium dopant assisted surface modification Zn ferrites for high-performance supercapacitor applications

被引:9
作者
Mahmoud, M. H. [1 ]
Elshahawy, Abdelnaby M. [2 ]
Taha, T. A. [3 ]
机构
[1] Jouf Univ, Coll Sci & Arts, Phys Dept, POB 756, Al Gurayyat, Saudi Arabia
[2] Assiut Univ, Fac Sci, Phys Dept, Assiut 71516, Egypt
[3] Jouf Univ, Coll Sci, Phys Dept, POB 2014, Sakaka, Saudi Arabia
关键词
Zn ferrites; Li doped; Supercapacitor; Surface engineering; Nanomaterials; MANGANESE-ZINC FERRITE; ZNFE2O4; NANOPARTICLES; THIN-FILM; GRAPHENE; ELECTRODE; HYBRID; ARRAYS;
D O I
10.1016/j.est.2023.107881
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Ferrite materials, such as Zn ferrites, show novel electrochemical properties. However, their low internal conductivity limits their usage in supercapacitor applications. Hence, developing an efficient strategy to improve the electrochemical properties of Zn ferrites has become a critical demand. Therefore, we introduce alkali metals, namely lithium, to induce the surface modification of Zn ferrites using the sol-gel-assisted combustion method. The X-ray diffraction (XRD) study has verified that the formation of cubic Li-doped Zn ferrites with hematite as a minor phase. The X-ray Photoelectron Spectroscopy (XPS) analysis establish that the LixZn1-xFe2O4 with x = 0.10 nanoparticles has a high hydroxyl group content with an inverse spinel structure. Li-doped Zn ferrites samples exhibit specific capacitance in decreasing order of x = 0.10 (898 F/g) > x = 0.05 (527 F/g) > x = 0.00 (42 F/g) at current density 2 A/g s in 6 M KOH. Furthermore, LixZn1-xFe2O4 with x = 0.10 displays good cycle life where it maintains around 80 % of its capacitance after 1000 charge-discharge cycles while retaining up to 66 % of its specific capacitance after 5000 cycles. It is worth noting that this electrochemical performance is among the highest values recorded for Zn ferrite-based materials for supercapacitor applications.
引用
收藏
页数:8
相关论文
共 51 条
[1]   Electrospun ZnFe2O4-based nanofiber composites with enhanced supercapacitive properties [J].
Agyemang, Frank Ofori ;
Kim, Hern .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2016, 211 :141-148
[2]   Significant Enhanced Optical Parameters of PVA-Y2O3 Polymer Nanocomposite Films [J].
Alrowaili, Z. A. ;
Taha, T. A. ;
El-Nasser, Karam S. ;
Donya, Hossam .
JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2021, 31 (07) :3101-3110
[3]  
Blake JM, 2017, ENVIRON SCI-PROC IMP, V19, P605, DOI [10.1039/c6em00612d, 10.1039/C6EM00612D]
[4]   One-Step Electrodeposited Nickel Cobalt Sulfide Nanosheet Arrays for High-Performance Asymmetric Supercapacitors [J].
Chen, Wei ;
Xia, Chuan ;
Alshareef, Husam N. .
ACS NANO, 2014, 8 (09) :9531-9541
[5]   Electromagnetic properties of manganese-zinc ferrite with lithium substitution [J].
De Fazio, E. ;
Bercoff, P. G. ;
Jacobo, S. E. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2011, 323 (22) :2813-2817
[6]   Sulfur-doped cobalt phosphide nanotube arrays for highly stable hybrid supercapacitor [J].
Elshahawy, Abdelnaby M. ;
Guan, Cao ;
Li, Xin ;
Zhang, Hong ;
Hu, Yating ;
Wu, Haijun ;
Pennycook, Stephen J. ;
Wang, John .
NANO ENERGY, 2017, 39 :162-171
[7]   Microwave - assisted hydrothermal synthesis of nanocrystal β-Ni(OH)2 for supercapacitor applications [J].
Elshahawy, Abdelnaby M. ;
Ho, Kuan Hung ;
Hu, Yating ;
Fan, Zhen ;
Hsu, You Wei Benedict ;
Guan, Cao ;
Ke, Qingqing ;
Wang, John .
CRYSTENGCOMM, 2016, 18 (18) :3256-3264
[8]   In situ growth of manganese ferrite nanorods on graphene for supercapacitors [J].
Fu, Min ;
Zhu, Zitong ;
Zhuang, Qingru ;
Zhang, Zhihao ;
Chen, Wei ;
Liu, Qingyun .
CERAMICS INTERNATIONAL, 2020, 46 (18) :28200-28205
[9]   One-step preparation of one dimensional nickel ferrites/graphene composites for supercapacitor electrode with excellent cycling stability [J].
Fu, Min ;
Chen, Wei ;
Zhu, Xixi ;
Liu, Qingyun .
JOURNAL OF POWER SOURCES, 2018, 396 :41-48
[10]   Low temperature processing and magnetic properties of zinc ferrite nanoparticles [J].
Gharagozlou, M. ;
Bayati, R. .
SUPERLATTICES AND MICROSTRUCTURES, 2015, 78 :190-200