Feature guided training and rotational standardization for the morphological classification of radio galaxies

被引:6
作者
Brand, Kevin [1 ]
Grobler, Trienko L. [1 ]
Kleynhans, Waldo [2 ]
Vaccari, Mattia [3 ,4 ,5 ]
Prescott, Matthew
Becker, Burger [1 ]
机构
[1] Stellenbosch Univ, Comp Sci Dept, Cnr Banghoek Rd & Joubert St, ZA-7600 Stellenbosch, South Africa
[2] Univ Pretoria, Dept Elect Elect & Comp Engn, ZA-0081 Pretoria, South Africa
[3] Univ Cape Town, Interuniv Inst Data Intens Astron, Dept Astron, 7701 Rondebosch, ZA-7701 Cape Town, South Africa
[4] Univ Western Cape, Interuniv Inst Data Intens Astron, Dept Phys & Astron, Robert Sobukwe Rd, ZA-7535 Cape Town, South Africa
[5] INAF Ist Radioastron, Via Gobetti 101, I-40129 Bologna, Italy
基金
新加坡国家研究基金会;
关键词
radio continuum: galaxies; methods: data analysis; methods: statistical; techniques: image processing; SORTING TRIPLES; CONFIG SAMPLE; EXPERT-SYSTEM; DECISIONS; COMPACT; CNN;
D O I
10.1093/mnras/stad989
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
State-of-the-art radio observatories produce large amounts of data which can be used to study the properties of radio galaxies. However, with this rapid increase in data volume, it has become unrealistic to manually process all of the incoming data, which in turn led to the development of automated approaches for data processing tasks, such as morphological classification. Deep learning plays a crucial role in this automation process and it has been shown that convolutional neural networks (CNNs) can deliver good performance in the morphological classification of radio galaxies. This paper investigates two adaptations to the application of these CNNs for radio galaxy classification. The first adaptation consists of using principal component analysis (PCA) during pre-processing to align the galaxies' principal components with the axes of the coordinate system, which will normalize the orientation of the galaxies. This adaptation led to a significant improvement in the classification accuracy of the CNNs and decreased the average time required to train the models. The second adaptation consists of guiding the CNN to look for specific features within the samples in an attempt to utilize domain knowledge to improve the training process. It was found that this adaptation generally leads to a stabler training process and in certain instances reduced overfitting within the network, as well as the number of epochs required for training.
引用
收藏
页码:292 / 311
页数:20
相关论文
共 73 条
  • [1] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [2] Radio Galaxy Zoo: machine learning for radio source host galaxy cross-identification
    Alger, M. J.
    Banfield, J. K.
    Ong, C. S.
    Rudnick, L.
    Wong, O. I.
    Wolf, C.
    Andernach, H.
    Norris, R. P.
    Shabala, S. S.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 478 (04) : 5556 - 5572
  • [3] The FIRST Classifier: compact and extended radio galaxy classification using deep Convolutional Neural Networks
    Alhassan, Wathela
    Taylor, A. R.
    Vaccari, Mattia
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 480 (02) : 2085 - 2093
  • [4] Classifying Radio Galaxies with the Convolutional Neural Network
    Aniyan, A. K.
    Thorat, K.
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2017, 230 (02)
  • [5] Bader S., 2008, P 4 INT WORKSH NEUR
  • [6] FR0CAT: a FIRST catalog of FR 0 radio galaxies
    Baldi, R. D.
    Capetti, A.
    Massaro, F.
    [J]. ASTRONOMY & ASTROPHYSICS, 2018, 609
  • [7] Pilot study of the radio-emitting AGN population: the emerging new class of FR 0 radio-galaxies
    Baldi, Ranieri D.
    Capetti, Alessandro
    Giovannini, Gabriele
    [J]. ASTRONOMY & ASTROPHYSICS, 2015, 576
  • [8] Radio Galaxy Zoo: host galaxies and radio morphologies derived from visual inspection
    Banfield, J. K.
    Wong, O. I.
    Willett, K. W.
    Norris, R. P.
    Rudnick, L.
    Shabala, S. S.
    Simmons, B. D.
    Snyder, C.
    Garon, A.
    Seymour, N.
    Middelberg, E.
    Andernach, H.
    Lintott, C. J.
    Jacob, K.
    Kapinska, A. D.
    Mao, M. Y.
    Masters, K. L.
    Jarvis, M. J.
    Schawinski, K.
    Paget, E.
    Simpson, R.
    Kloeckner, H. -R.
    Bamford, S.
    Burchell, T.
    Chow, K. E.
    Cotter, G.
    Fortson, L.
    Heywood, I.
    Jones, T. W.
    Kaviraj, S.
    Lopez-Sanchez, A. R.
    Maksym, W. P.
    Polsterer, K.
    Borden, K.
    Hollow, R. P.
    Whyte, L.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 453 (03) : 2326 - 2340
  • [9] Science with the Murchison Widefield Array: Phase I results and Phase II opportunities
    Beardsley, A. P.
    Johnston-Hollitt, M.
    Trott, C. M.
    Pober, J. C.
    Morgan, J.
    Oberoi, D.
    Kaplan, D. L.
    Lynch, C. R.
    Anderson, G. E.
    McCauley, P., I
    Croft, S.
    James, C. W.
    Wong, O., I
    Tremblay, C. D.
    Norris, R. P.
    Cairns, I. H.
    Lonsdale, C. J.
    Hancock, P. J.
    Gaensler, B. M.
    Bhat, N. D. R.
    Li, W.
    Hurley-Walker, N.
    Callingham, J. R.
    Seymour, N.
    Yoshiura, S.
    Joseph, R. C.
    Takahashi, K.
    Sokolowski, M.
    Miller-Jones, J. C. A.
    Chauhan, J., V
    Bojicic, I
    Filipovic, M. D.
    Leahy, D.
    Su, H.
    Tian, W. W.
    McSweeney, S. J.
    Meyers, B. W.
    Kitaeff, S.
    Vernstrom, T.
    Gurkan, G.
    Heald, G.
    Xue, M.
    Riseley, C. J.
    Duchesne, S. W.
    Bowman, J. D.
    Jacobs, D. C.
    Crosse, B.
    Emrich, D.
    Franzen, T. M. O.
    Horsley, L.
    [J]. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, 2019, 36
  • [10] CNN architecture comparison for radio galaxy classification
    Becker, Burger
    Vaccari, Mattia
    Prescott, Matthew
    Grobler, Trienko
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 503 (02) : 1828 - 1846