Lower bound for the expected supremum of fractional brownian motion using coupling

被引:0
作者
Bisewski, Krzysztof [1 ,2 ]
机构
[1] Univ Lausanne, Lausanne, Switzerland
[2] Quartier UNIL Chamberonne, Batiment Extranef, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
Fractional Brownian motion; expected value of supremum; expected workload; lower bound; SIMULATION; ESTIMATORS; MAXIMUM;
D O I
10.1017/jpr.2022.129
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive a new theoretical lower bound for the expected supremum of drifted fractional Brownian motion with Hurst index $H\in(0,1)$ over a (in)finite time horizon. Extensive simulation experiments indicate that our lower bound outperforms the Monte Carlo estimates based on very dense grids for $H\in(0,\tfrac{1}{2})$ . Additionally, we derive the Paley-Wiener-Zygmund representation of a linear fractional Brownian motion in the general case and give an explicit expression for the derivative of the expected supremum at $H=\tfrac{1}{2}$ in the sense of Bisewski, D?bicki and Rolski (2021).
引用
收藏
页码:1232 / 1248
页数:17
相关论文
共 26 条
  • [1] Abramowitz M., 1964, HDB MATH FUNCTIONS F
  • [2] DISCRETIZATION ERROR IN SIMULATION OF ONE-DIMENSIONAL REFLECTING BROWNIAN MOTION
    Asmussen, Soren
    Glynn, Peter
    Pitman, Jim
    [J]. ANNALS OF APPLIED PROBABILITY, 1995, 5 (04) : 875 - 896
  • [3] Benassi A, 1997, REV MAT IBEROAM, V13, P19
  • [4] Derivatives of sup-functionals of fractional Brownian motion evaluated at H=1/2
    Bisewski, Krzysztof
    Debicki, Krzysztof
    Rolski, Tomasz
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [5] BOUNDS FOR EXPECTED SUPREMUM OF FRACTIONAL BROWNIAN MOTION WITH DRIFT
    Bisewski, Krzysztof
    Debicki, Krzysztof
    Mandjes, Michel
    [J]. JOURNAL OF APPLIED PROBABILITY, 2021, 58 (02) : 411 - 427
  • [6] Zooming-in on a Levy process: failure to observe threshold exceedance over a dense grid
    Bisewski, Krzysztof
    Ivanovs, Jevgenijs
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25 : 1 - 33
  • [7] Borodin Andrei N., 2002, Handbook of Brownian Motion-Facts and Formulae, DOI 10.1007/978-3-0348-8163-0
  • [8] New and refined bounds for expected maxima of fractional Brownian motion
    Borovkov, Konstantin
    Mishura, Yuliya
    Novikov, Alexander
    Zhitlukhin, Mikhail
    [J]. STATISTICS & PROBABILITY LETTERS, 2018, 137 : 142 - 147
  • [9] Bounds for expected maxima of Gaussian processes and their discrete approximations
    Borovkov, Konstantin
    Mishura, Yuliya
    Novikov, Alexander
    Zhitlukhin, Mikhail
    [J]. STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2017, 89 (01) : 21 - 37
  • [10] TESTS FOR HURST EFFECT
    DAVIES, RB
    HARTE, DS
    [J]. BIOMETRIKA, 1987, 74 (01) : 95 - 101